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1 Introduction

Caveat Emptor
This document is a draft specification. It is incomplete, and everything

is subject to change. Please ensure you are reading the latest draft. Certain
language features described herein have not been implemented; in other cases,
the implementation deviates from this specification. When such features are
discussed, we will endeavor to note this clearly in the text.

Notation and Conventions: Sections that provide design rationale or
examples appear in italics.

When we refer to a class with a specific name n, we mean the class n defined
by the modules of the underlying Newspeak platform (8.3).

Newspeak is a programming language in the Smalltalk [GR83] tradition.
Newspeak is:

• Message-based. All computation - even an object’s own access to its in-
ternal structure - is performed by sending messages to objects. Hence,
everything in Newspeak is an object, from elementary data such as num-
bers and booleans up to functions, classes and modules.

• Secure. Newspeak objects encapsulate their representation, and Newspeak
programs have no static state, providing a sound basis for an object-
capability security model [Mil06].

• Reflective. Newspeak programs are causally connected to their executable
representation via a reflective API. Reflection in Newspeak is mirror based
[BU04], with mirrors acting as capabilities. Given access to the appropri-
ate mirrors (and only given such access), a running program and can both
introspect and modify itself.

• Modular. Newspeak module definitions are independent, immutable, self-
contained parametric namespaces. They can be instantiated into modules
which may be stateful and mutually recursive. These modules are in-
herently re-entrant, because there is no static state in Newspeak. All
inter-module dependencies are explicit. Modules and their definitions are
first class objects that can be manipulated at run time.
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• Concurrent. Concurrency in Newspeak is based on actors. Actors are
objects with their own thread of control. They share no state with other
actors; they communicate exclusively via asynchronous message passing.
Actors are non-blocking, race-and-deadlock free, and scalable. Note that
the FFI (8.5) can undermine actor isolation as C can take state passed
from one actor, store it globally, and return it to another actor. Non-
blockingness also requires care, as a callback passed in by one actor can
be invoked when C is called by another. Must ensure that said call back
acts as a future, or fails (the former, to allow event processing). In an
ideal world, one would only communicate with foreign languages running
in a distinct actor. This would be more secure, and require less special
handling; this was part of the original vision of Smalltalk. Newspeak is
pragmatic in this regard; it remains idealistic, but only to an extent.

• Optionally typed. Newspeak supports pluggable types [Bra04], allowing
the language to be extended with arbitrary type systems. These type sys-
tems are necessarily optional, and never affect run-time semantics. They
utilize Newspeak’s metadata facility (4.3), which allows annotations to be
attached to any node in a program’s abstract syntax tree. Unimplemented.

• Network-serviceable. Newspeak applications can be updated over the in-
ternet while running; the combination of reflective update and lazy slots
(6.3.3) means the language can support orthogonal synchronization, mak-
ing it straightforward to synchronize persistent data with a remote server,
supporting backup, sharing and collaboration [Bra]. Lazy slots are only
partially implemented. The language supports them, but the tooling is not
yet ready.

2 Overview

In this section, we provide a quick introduction to those properties of Newspeak
that are unusual, in order to provide intuition when reading the specification
proper. The normative part of this specification begins with section 3.

2.1 Terminology

We follow Smalltalk/Self/Objective-C terminology in using the term message to
refer to both synchronous and asynchronous messages. A synchronous message
send is like a virtual method call. A message must be sent to a receiver. Some
readers may prefer to think of the receiver as the target of a method invocation.

Our use of the term message may be slightly non-standard, but it conveys
a valuable intuition about loose coupling. The term method does not; common
usage allows for methods that are static, final/non-virtual etc.
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2.2 Syntax

The syntax of Newspeak is close to those of Smalltalk and Self [US87]. We
expect some details to change over time, to make the language somewhat more
familiar to most programmers. However, we intend to retain key features of
the Smalltalk syntax where they confer a real advantage. Here we highlight the
differences between Newspeak and other languages briefly.

2.2.1 Object Member Selection

In most languages, a notation such as o.m or o.m() is used to denote a member m
of an object o. The object member selection operator is dot, and if the member
is a method the member name is followed by a parenthesized parameter list.

In Newspeak, as in Smalltalk, the only operation on objects is member selec-
tion, and so the dot conveys no information. On the contrary, it is redundant,
and makes it harder to embed domain specific languages within Newspeak.
Therefore, member selection is implicit: we write o m for object member selec-
tion. Member selection always means sending a message (invoking a method),
and there is no need for parentheses to distinguish field access from method
access. Hence, references to methods without arguments are not distinguished
from references to slots (aka fields) or to nested classes.

2.2.2 Parameter Lists

As noted above, if there are no parameters, no parameter list needs to be written
in Newspeak. If there are parameters, we follow the Smalltalk lead of distin-
guishing between methods that denote binary operators (aka binary methods)
and other methods. Binary methods are written in the traditional infix nota-
tion: 5 + 4. However, all binary operators have the same precedence and are
evaluated from left to right, so 5+4*2 evaluates to 18 rather than 13.

This is controversial, as it may surprise most programmers. An alternative
is to have the most common operators follow conventional precedence, while
others follow the usual left to right precedence. Scala [OSV08] takes this route.
However, beyond addition/subtraction and multiplication/division, it’s not clear
what to do. Should one treat all C operators specially? All Java operators? All
Python operators?

Another issue is that while the common precedence rules may make sense for
general purpose programming, they may not be good choices in domain specific
languages. Good Newspeak practice is to embed domain specific languages within
Newspeak as much as possible.

Other methods that take parameters are known as keyword methods. We fol-
low Smalltalk’s rules (not Self’s!). Parameters are interspersed with the method
name in a mixfix notation. Places where a parameter is expected are denoted
by a colon, which is then followed by the parameter, and then the rest of the
method name (if further parameters are needed).
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Example: anArray at: 5 + 1 put: 0+ 6 factorial would probably be written as
anArray.atPut(5+1, 0 + 6.factorial()) in a more traditional syntax, and, assuming
that the receiver is indeed an array, places the value 720 into the receiver’s 6th
element.

This notation makes it impossible to have an arity error when calling a
method. In a dynamically typed language, this is a huge advantage.

I am keenly aware that this syntax is unfamiliar to most programmers, and
is a potential barrier to adoption. However, it improves usability massively.

2.2.3 Closures and other Literals

An n-ary closure is written as in Smalltalk: [:p1 ... :pN | body].
This notation is much more concise than those used in functional program-

ming. Closures are still rare enough that most programmers are not wedded to
a particular syntax. However, we will likely change the syntax to {:p1 ... :pN |
body} as we adopt curly braces for class and method delimiters.

Tuples are written {e1 . .... . eN }.
If we change the closure syntax, we would use square braces for tuples, which

is closer to widely recognized javascript notation. The remaining difference
would be the use of dots rather than commas as separators. We see real value in
using comma as an operator, and do not plan to conform exactly to javascript
notation.

The current implementation uses Smalltalk syntax for strings and symbols.
We anticipate moving to a more mainstream notation. Indeed, we will likely
make all string literals act as symbols, and represent characters as a special case
of these.

2.3 Class Declarations

Like most object oriented languages, but unlike Smalltalk, Newspeak supports
a syntax for class declarations. The details of the syntax are likely to evolve.

Newspeak classes contain slots, methods and nested classes. Slots are like
fields/instance variables, but accessed exclusively via messages. Methods are
always virtual (i.e., subject to override) and may be inherited via mixin-based
inheritance. Nested classes are discussed later in this section.

Here are some examples to convey an intuition:
class Empty = ()()
A class named Empty. As minimal a class declaration as possible. No super-

class is specified, so it inherits from Object. Parentheses are used as delimiters
(this will change). What might be surprising is that there are two sets of paren-
theses. This will be explained shortly.

class JustAsEmpty = Object ()()
Same as above, with the superclass listed explicitly.
class Box = (| contents | )()
This class has a single slot named contents. Slots are declared in between

vertical bars, much like Smalltalk local variables. The first set of parentheses
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in the above declaration delimits the instance initializer of the class. Such an
initializer always exists, though, as we’ve seen, it may be empty. It contains all
slot declarations for the class. Slots may be followed by initialization expressions

class BoxWithNonNullContents = ( | contents = {1. 2. 3}. | )()
The above sets the slot contents to a tuple (an array) with 3 elements - 1, 2

and 3. Slot declarations may be followed by further initialization code, as in
class AnotherBox = (
| public contents = Array new: 3. |
1 to: 3 do:[:i | contents at: i put: i].
)()

The instance initializer is followed by the class body (delimited by the last set
of parentheses in our examples), which may contain nested classes and methods.

Below, class WorkingBox has a method named doAction: that takes a single
parameter, a. The method body is also delimited by parentheses.

class WorkingBox = (
| contents |
)(

public doAction: a = ( a value: contents )
)

Class declarations create a class factory object that provides the means of
producing instances of the class. The factory object supports at least one mes-
sage that produces new instances. This is known as the primary factory method.
By default, it is called new. So the following code produces an instance of class
AnotherBox and queries it for its contents, evaluating to an array with the three
elements 1,2 and 3.

AnotherBox new contents
Finally, here is a class with a single nested class:
class Outer = () (
public class Inner = ()()

)
Nested classes deserve discussion. As in Beta [MMPN93], and unlike Java

[GJSB05], every instance of an enclosing class has its own distinct set of nested
classes. These nested classes may be accessed by sending messages to the in-
stance. For example, the code above defines a class Outer with a nested class
Inner. We find that if we create two distinct instances of Outer and query each
for its nested class, the two nested classes are different. In other words

Outer new Inner = Outer new Inner.
evaluates to false.
The situation is depicted in figure 1. The class Outer is shown with two

instances, anOuter 1 and anOuter 2. Each such instance has its own class Inner.
Each Inner class can have its own instances - in this case anInner1 and anInner
2 respectively.

The relationship between an instance o of an enclosing class EC and its
nested classes is bidirectional. Each such nested class NC is tied to o, which is
known as its enclosing object.

The enclosing object relationship is also shown in figure 1.
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Figure 1: Enclosing classes, nested classes and their instances
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The enclosing object is a property of a class, and so it is common to all the
class’ instances. Hence we may also speak of the enclosing object of an object
i, which is the enclosing object of i’s class.

Because all references to nested classes are message sends, nested classes can
be overridden.

class ChildOfOuter = Outer () (
public foo = (ˆInner new) (* Note that the caret acts like return *)

)
class GrandChildOfOuter = ChildOfOuter( | public Inner = String. |) (
)
GrandChildOfOuter new foo. (* returns a String, not an Inner *)
Here we have overridden a nested class declaration with a slot. It is also

possible to override a superclass of a nested class; consider this variation:
class ChildOfOuter = Outer () (

public class Nested = Inner () ()
public foo = (ˆInner new)

)
class GrandChildOfOuter = ChildOfOuter( | public Inner ::= String. |) (
)
GrandChildOfOuter new Nested. (* returns a subclass of String, not Inner *)
(GrandChildOfOuter new Inner: Array) Nested. (* returns a subclass of Array *)
The code above demonstrates that one cannot, in general, expect two in-

stances to have the same nested classes. Nested classes are created lazily, and
cached thereafter. Hence Nested is created after inner has been set to Array. This
also shows that all nested classes must be compiled as mixins, as the superclass
cannot be reliably known at compilation time.

Here are a few more illustrative examples. If g is an instance of GrandChild-
OfOuter, then

g Inner. (* returns String *)
g Nested. (* returns a subclass of String *)
(g Inner: Array) Nested. (* returns the same subclass of String, even though In-

ner has changed *)
g Inner (* returns Array *)

2.3.1 Implicit Receivers and Scope

In most object-oriented programming languages, if the receiver is self (aka this)
it can be omitted. It is often said that we are referring to a method name that
is in scope.

In the presence of class (or object literal) nesting, if the receiver is implicit
(i.e., omitted), it may be either self or an enclosing object of self . In stati-
cally typed languages, the lexical level of the receiver is determined at compile
time. In dynamically typed languages, it is usually done at run time as part of
the method lookup process. Typically, one starts the lookup with the class of
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self (or self itself in a prototype based language) and proceeds up its inheri-
tance chain; if no method is found, one jumps to the enclosing lexical level and
recurses.

Newspeak differs in that lookup proceeds up the lexical scope chain (start-
ing with the lexically deepest activation record) and only if no lexically visible
matching method is found, do we proceed up the inheritance chain of self .
After that, no further lookup is done. See figure 4 for an illustration. For a
discussion of the rationale for this decision see [Bra07b]. An extensive treat-
ment of Newspeak’s nested classes and their impact on modularity is given in
[BvdAB+10].

3 Concepts

3.1 Objects

An object is an entity that can perform computation in response to a message
(3.4). Only objects perform computation, and they do so only in response to
messages sent to them. Every object is an instance of some class (6). The class
determines the set of slots (6.3.2), methods (3.5), and nested classes (6) that are
associated with the object. Objects are the only entities that exist during the
execution of a Newspeak program.

3.1.1 Values: Deeply Immutable Objects

Some objects cannot change after they are created. They are deeply immutable
and known as value objects. A value object is globally unique, in the sense that
no other object is equal to it. An object o is a value object iff one or both of
the following conditions hold:

• o is either a module definition (6.4) or an instance of String, Symbol,
Character, Boolean or Number.

• Under the assumption that o is a value object, it can be shown that:

– All its slots are immutable, have been initialized and contain value
objects; and

– Its enclosing objects (3.3) are all value objects; and

– Its class inherits from class Value and does not define an identity
method (==).

If the class Value declares an identity method, that method must return the
same results as Value’s equality method (=).

The implications for actor concurrency (3.7) are that values can be passed
among actors. Values can be copied freely across actor boundaries, or shared,
as desired - but only if their initialization is complete.

Examples of such objects are numbers (5.1.1), booleans (5.1.2), characters
(5.1.4), literal strings (5.1.5), symbols (5.1.6) and module definitions (6.4).
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At the moment, Newspeak still relies on Squeak Smalltalk for some of its
libraries. There is no class Value yet.

Values are only immutable at the base level. If the code that defines a value
changes, the behavior of the value is necessarily different. For example, if the
code of the Integer class changes, the actual behavior of integers might differ.
As a more typical example, module definitions can be mutated via reflection.

There are two scenarios regarding the impact of reflective changes across
actors.

One applies to actors that co-exist in the same address space. Values may
be shared among such actors (rather than copied). Reflective changes to such
shared values will be seen across actor boundaries.

The second scenario is when an actor resides in a distinct address space.
Here, values are necessarily copied, and changes in an actor in one address
space will not impact an actor in another address space.

To make sense of this, some construct that incorporates the idea of an address
space is needed. My current thinking is that a VM (as reified by a VM mirror
(8.3.1)) is responsible for a set of actors, and reflective operations will impact
values seen by all these actors. Actors that are managed by another VM will
not.

3.1.2 Eventual References

Eventual references are objects that are handles for objects that are not available
in the heap of the currently executing actor (3.7). There are two kinds of
eventual references: promises and far references. Promises represent the result
of an asynchronous message send. Far references are proxies for objects of a
different actor (3.7).

3.2 Classes, Mixins and Inheritance

A class is an object that defines a family of objects, known as its instances.
All instances of a class respond to the same set of messages. A class is either
the empty class Top or the application of a mixin to another class known as its
superclass. Only the class Object may have Top as its superclass. See figure 2.

The purpose of Top is to allow for a uniform definition in which all code
resides in mixins - including the code in Object. Top doesn’t exist yet.

A class S is a proper superclass of a class C iff S is either the superclass of
C or a proper superclass of the superclass of C. A class S is a superclass of a
class C iff S is either a proper superclass of C or S = C. A class S is a proper
subclass of C iff C is a proper superclass of S. A class S is a subclass of C iff C
is a superclass of S.

The class’ mixin specifies how the class differs from the superclass. The class
inherits all the properties of its superclass that are not explicitly overridden (i.e.,
specified to be different) by its mixin. Mixins are associated with class decla-
rations (6). A class’ mixin may be used in a mixin application expression (6.2)
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Figure 2: Mixins, classes and instances

12



to derive additional classes that share the same mixin but may have different
superclasses.

Except for Top all classes are subclasses of class Object, which provides a
small number of methods available to all classes. These include equality, identity,
the corresponding hashes etc. They also include accessors for predefined classes
and objects, such as the classes of the built-in literals (5.1) e.g., String. In
addition, the methods Array and ByteArray provide predefined factory objects
for arrays.

Currently, we use the Array and ByteArray classes provided by Squeak as these
factories. However, the intent is to use a factory which is not a class. Newspeak,
like most languages (and unlike Smalltalk), does not support the definition of
variable sized classes like arrays. Of course, the arrays created have such a
class, but access to it is restricted by the mirror system.

Each class is an instance of a unique metaclass. All metaclasses are instances
of class Metaclass, and are direct subclasses of Class. Metaclasses may not be
subclassed.

This differs from Smalltalk, where the metaclass would be a subclass of the
metaclass of the class’ superclass. The metaclass hierarchy in Newspeak is de-
liberately kept very flat.

3.3 Enclosing Objects

Every class has an enclosing object defined as follows:

• The enclosing object of a class definition expression (6) is its surrounding
activation, if any, and nil (5.1.3) otherwise, as specified in section 6.

• The enclosing object of an object literal’s (5.1.10) class is the literal’s
surrounding activation, if any, and nil otherwise, as specified in section
5.1.10.

• The enclosing object of a class created by a mixin application expression
(6.2) is the enclosing object of the class used to derive the mixin, as
specified in section 6.2.

• Otherwise, the class is necessarily a member class; the enclosing object
of a member class C is the object of which C is a member - the object
that received the message that created the class object C, as specified in
section 6.

• The enclosing object of a class and the enclosing object of its metaclass
are always the same.

The above rules imply that the enclosing object of the result of evaluating a
top level expression (3.8) is always nil and in particular, the enclosing object of
a module definition (6.4) is nil.

Method and closure activations (3.6) also have enclosing objects. The en-
closing object of a method activation a is a’s current instance. The enclosing
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object of an activation of a closure c is the (method or closure) activation that
instantiated c.

Let o be an instance of class C and let S be a superclass of C. The enclosing
object of o with respect to S is the enclosing object of S.

Given an object o:
The 0th enclosing object of o with respect to a class C is o if C is a superclass

of the class of o and undefined otherwise. The 1st enclosing object of o with
respect to a class C is the enclosing object of C. For n > 1, an object on is the
nth enclosing object of o with respect to a class C if on is the enclosing object
of Sn−1 where:

1. on−1 is the n− 1st enclosing object of o with respect to C.

2. Cn−1 is the class of on−1.

3. Sn−1 is a superclass of Cn−1.

4. Sn−1 is an application of the mixin associated with the n − 1st lexically
enclosing class declaration of C (6).

5. There is no class Sk such that

• Sk is a superclass of Cn−1.

• Sk is a proper subclass of Sn−1.

• Sk is an application of the mixin associated with the n−1st lexically
enclosing class declaration of C.

The definition above may seem rather esoteric and unmotivated. However,
it is useful in order to to define the precise meaning of method lookup. The
concept of the kth enclosing object with respect to a class is used in section 5.9,
which in turn is referenced when defining self sends and implicit receiver sends
in general.

To establish intuition, it helps to visualize some of the relationships, as shown
in figure 3.

The figure shows the nesting structure of a class S3, which contains a nested
class S2, in which is nested the class S1, which contains the class C = S0. It
also shows an instance o = o0 of some subclass of C, and the chain of kth
enclosing objects of o0 with respect to C, for k between 0 and 3. If a method of
S0 is invoked upon o0, and this method refers to a message declared in one of
the lexically enclosing classes Sk, the receiver for that message will be ok, the
kth enclosing object of o0 with respect to C.

If, after reading this and section 5.9, you are still baffled, you may find
it helpful to consult the literature on nested classes, in particular [Mad99] ,
[SD03].
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o2 C2

o3

o0 C0

o1 C1

S1

S0

S2

class S0

class S1

class S2

class S3

Figure 3: The kth enclosing object of o = o0 with respect to C = S0, k ∈ 0..3
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3.4 Messages

A message consists of a distinguished object known as its selector, and a list of
argument objects. Computation takes place when an object receives a message.
Messages are usually inaccessible to an executing Newspeak program, but they
may be reified by the implementation by means of a message mirror. A message
mirror on a message µ is an object obeying the protocol of class MessageMirror
that provides access to µ’s selector and arguments.

In the Squeak implementation, class Message is used to represent messages.
We say that a message selector s is defined on an object o if a method with

selector s is defined for (3.5) the class C of o.

3.5 Methods

A method defines an action be executed when it is invoked on an object in
response to a message. Methods are declared within class declarations and have
an associated selector (3.4).

We say that a method f is defined by the mixin (6) of the class declaration
in which f is declared. A method f is defined for a class C under the following
conditions:

• If f is defined by the class’ mixin.

• Otherwise, if f is defined for the class’ superclass.

Let C be a class and s be a selector; the defining class of s with respect to
C (written definingClass(s, C)) is

• undefined, if C = Top

• C, if a method f with selector s is defined by the mixin of C

• definingClass(s, superclass(C)) otherwise.

When a user defined method f is invoked on an object o in response to a
message µ, an activation a (3.6) derived from f in response to µ is instantiated.
The current instance of the activation is set to o.

The code in the method is then executed (7) in the context of a. If execution
of the method completes, control is passed back to a’s continuation object (3.6)
and a’s continuation object becomes nil. If no explicit return statement (7.2)
is executed, the value returned is o (the current binding of self).

Severing the connection between an activation and its continuation object
upon method termination means that closures are not full continuations by de-
fault. Continuations should be created very explicitly via mirrors on activations.

The syntax of methods is described in section 6.3.4.
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3.6 Activations

An activation is an object that is created in order to process a message (3.4). An
activation is always derived from either a method definition (3.5) or a closure
(5.1.8) or is a top level activation. If an activation is derived from a method,
it is known as a method activation. If its derived from a closure it is called a
closure activation. Closure activations differ from method activations in how
they support the return statement (7.2).

An activation a derived from a method definition or closure p in response to
message µ has the following properties :

• Zero or more parameter slots, one for each formal parameter of p. Pa-
rameter slots are immutable (6.3.2). The nth parameter slot is initialized
with the value of the nth argument of µ.

• Zero or more local slots, one for each slot declaration in the body of p.
Local slots are defined by their corresponding declarations (6.3.2). They
are initialized in the context of a, according to their declarations.

• The current instance (self). For method activations, the current instance
is determined when the method is invoked. For closure activations, the
current instance is the current instance of the closure p.

• The current class. In the case of method activations, the current class is
definingClass(s, C) where s is the selector of p and C is the class of the
current instance, unless explicitly specified otherwise (the only such cases
are super sends (5.10)). For closure activations, the current class is the
current class of p.

• The current continuation object. Let sender be the activation that sent
the message that caused this invocation. Then sender determines the
continuation object as follows:

– If sender has further computation that it needs to perform after this
invocation, then the continuation object is sender.

– Otherwise, the continuation object is the continuation object of sender.

This specifies tail call elimination, to the extent that it is observable. Unim-
plemented.

It is a compile-time error to define a method or closure that has a parameter
and a local with the same name.

Activations may be marked uncontinuable. When an activation a is marked
uncontinuable, it’s continuation object is set to nil. Furthermore, any activation
x whose continuation object is a is marked uncontinuable.

Newspeak programming environments must always allow developers to re-
tain activations during debugging so that accurate and complete stack traces
can be maintained.
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Eliminating tail calls can be detrimental to the development experience, be-
cause such elimination may throw away activations representing valuable infor-
mation regarding the history of a computation being debugged. This need not be
the case, and runs counter to Newspeak philosophy (Goodthink).

In general, the problem of keeping the history of a computation is not limited
to the stack. Back-in-time debuggers should be able to keep garbage collected
parts of the heap available, for example. We do not provide such functionality,
and do not mandate it - yet.

Top level activations have no slots, and their current instance, their current
class and their continuation object are nil. An activation a responds to messages
that access its slots.

3.7 Actors

Actors are units of explicit concurrency. Actors communicate only via asyn-
chronous messages. Asynchronous messages immediately return a promise as a
result (3.1.2). When the receiving actor has processed the message, the promise
is resolved. If processing the message produced a result that is made available
to the sender, the promise is fulfilled. If processing the message raised an excep-
tion to transmitted to the sender, the promise is broken. A promise may also
be broken due to a failure of the communication system between actors.

The use of asynchronous messages between actors means that a sending actor
cannot be blocked waiting for another actor to reply.

An actor is associated with a heap, a memory that is distinct from that of
other actors.

If computation of a promise produces an object o in the heap of the current
actor, the result is o. Otherwise, the result of promise resolution is the remote
representation of the object produced by computation of the promise. The
remote representation of an object o is o, if o is a value; otherwise the remote
representation of o is a far reference to o.

Hence an actor never has a far reference into its own heap.
When an object is used as an argument to an asynchronous send to another

actor, its remote representation is incorporated into the message delivered to
the other actor.

But again, if the receiver is in fact in the same heap, the object is passed
directly.

Consequently, actors are isolated from each other and share no mutable state
with other actors.

Modulo reflection, as discussed in section 3.1.1 above.
An actor has a mailbox, where messages sent to it arrive. It processes these

messages in the order they arrive in the mailbox.
There is no notion of a pattern matching construct by means of which an

actor can choose which messages to receive. Indeed, there is no construct for re-
ceiving messages explicitly. This means that an actor cannot block while waiting
for a message of some particular form. Since an actor cannot block on sending
or on receiving, deadlock cannot occur.
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Furthermore, since an actor never blocks in the middle of execution, one can
implement a non-preemptive scheduler that swaps actors out only when they have
completed the processing of an asynchronous message (a turn, in E parlance).
This means that the system need not maintain a stack per actor, which makes
it easy to scale to large numbers of actors.

More sophisticated strategies would allow preemption as long as free threads
are available, or serialize preempted actors to prevent starvation/denial of ser-
vice.

The order in which messages are delivered is the E-Order defined by Miller
in [Mil06].

Actors are created from top-level mixins.
We use mixins to instantiate actors because one cannot, in general, construct

an actor from an object; if the object is not deeply immutable, this would result
in shared state across actors. We can only create an object from a value. To
allow mutable state within an actor, we must create the actor from a deeply
immutable mixin object, from which we derive a class that can be instantiated
into a (possibly mutable) instance.

We restrict ourselves to top level mixins because nested mixins should create
nested classes, which in turn require non-nil enclosing objects. A fresh actor
has no access to an appropriate enclosing object for the class it is creating. For
top level classes (created from top level mixins) nil is an appropriate enclosing
object. For nested classes this might lead to failure, depending on whether the
mixin accesses its surrounding lexical scope. Depending on compilation strategy,
the failure might be extremely hard to explain to users.

Instead, a suitable top level mixin leads to the creation of a new actor A,
from which one can then extract a suitable far reference to any nested class
within A as desired.

Given a mixin M , an actor is created by applying M to Object, producing a
fresh class in the new actor’s heap. A far reference to the class is returned to the
creating actor. Typically, the fresh class’ factory is then invoked asynchronously
to produce a (far-reference to an) instance of the actor.

How do we efficiently enforce these requirements? Using a bit that marks
values (a deeply immutable bit)?

3.8 Programs

A top level expression is one of:

• An object literal (5.1.10) that is not lexically enclosed inside a class dec-
laration (6) or an object literal.

• A class declaration that is not lexically enclosed inside a class declaration
or an object literal.

• A literal expression whose meaning is not dependent on an implicit mes-
sage send, and is not lexically enclosed inside a class declaration or an
object literal.
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• An ordinary message send (5.5) whose receiver and arguments are top
level expressions.

• A top level expression that is parenthesized (5.3).

A top level expressions is executed in the context of a top level activation.
A Newspeak source program is a top level expression. This also means that a
top level expression is not evaluated in the context of an enclosing object; this
precludes implicit receiver sends (5.7). Literal expressions (5.1) that depend on
an implicit send to the enclosing object for their meaning are inexpressible at
the top level as well. Eventually, it may be that all literals are defined this way.

Likewise, by definition there is no surrounding class at the top level, so self
(5.2), self sends (5.8), outer sends (5.9) and super sends (5.10) are excluded as
well.

What can be expressed are module declarations (6.4), and sends that can be
used to send these declarations to a module that can instantiate them and link
them together.

At this time, object literals have not been implemented.

4 Lexical Conventions

4.1 Reserved Words

The following are reserved words: self, super, outer, true, false, nil.
One can debate whether true, false and nil should be reserved words or just

message sends.
We may also change the syntax for returning from a method from ˆe to

return:: e. This would make return a reserved word (or at least effectively
preclude its use for mutable slots, or keyword methods).

4.2 Lexical Rules

Here is the lexical grammar for Newspeak. It and all subsequent syntax are
written in Newspeak, using the parser combinator library described in [Bra07a].

colon = tokenFromChar: ”:”.
comma = tokenFromChar: ”,”.
dollar = tokenFromChar: ”$”.
dot = tokenFromChar: ”.”.
equalSign = tokenFromChar: ”=”.
hat = tokenFromChar: ”ˆ”.
lbracket = tokenFromChar: ”[”.
lcurly = tokenFromChar: ”{”.
lparen = tokenFromChar: ”(”.
langleBracket = tokenFromChar: ”<”.
mixinOperator = tokenFromSymbol: ’<”.
pound = tokenFromChar: ”#”.
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rangleBracket = tokenFromChar: ”>”.
rbracket = tokenFromChar: ”]”.
rcurly = tokenFromChar: ”}”.
rparen = tokenFromChar: ”)”.
semicolon = tokenFromChar: ”;”.
slash = tokenFromChar: ”/”.
vbar = tokenFromChar: ”|”.
letter = (charBetween: ”a” and: ”z”) | (charBetween: ”A” and: ”Z”).
specialCharacter = (char: ”+” ) | (char: ”/”) | (char: ”\’”) | (char: ”*”) | (char: ”˜” ] |

(char: ”<”) | (char: ”>”) | (char: ”=”) | (char: ”@”) | (char: ”%”) |
(char: ”|”) | (char: ”&”) | (char: ”?”) | (char: ”!”) | (char: ”,’”.

underscore = char: ” ”.
id = (letter | underscore), (letter | digit | underscore) star.
identifier = tokenFor: id.
kw = id, (char: ”:”).
kws = kw plus.
keyword = tokenFor: kw.
setterKw = kw, (char: ”:”).
setterKeyword = tokenFor: setterKw.
beginComment = (char: ”(”), (char: ”*”).
endComment = (char: ”*”), (char: ”)”).
metadataTag = (char: ”:”), id, (char: ”:”).
comment = beginComment, metadataTag opt, ((endComment not, any) | com-

ment) star, endComment.
binSel = (specialCharacter | (char: ”-’”), (specialCharacter star).
binarySelector = tokenFor: binSel.

4.3 Metadata

Metadata appears in nestable comments of the form (*:id: xyz *) where id is the
name of a particular metadata interpreter that is intended to parse and process
the text xyz. The identifier given between the colons is the comment’s tag, and
the text following the second colon is the comment’s payload.

A metadata comment can appear between any two expressions or declara-
tions.

A metadata comment mc is considered to appear immediately before an
expression, formal parameter or slot declaration x if nothing but whitespace
and comments appears after mc and before x.

A metadata comment mc is considered to appear immediately after an ex-
pression, formal parameter or slot declaration x if nothing but whitespace and
comments appears after x and before mc.

A metadata comment that appears immediately prior to an expression is as-
sociated with that expression. A metadata comment that appears immediately
prior to a slot or parameter declaration is associated with that slot declaration.
A metadata comment that appears immediately after a method or class factory’s
message pattern is associated with that method or class factory. A metadata

21



comment that appears immediately after a classes’ header is associated with
that class.

The above implies that multiple metadata comments can be associated with
an expression or declaration; that is, metadata comments can appear in sequence
with no intervening expressions or declarations.

Metadata comments are available at runtime via mirrors. This means that
they are available at runtime iff the platform supports mirrors. Reflective ap-
plications have full access to all metadata. Non-reflective applications are not
burdened by it at runtime.

Ordinary comments are given as metadata that does not specify a tag That
way, they are attached to a known place in the program and are not thrown
away, so they can be preserved during refactoring.

We expect to use the metadata mechanism for a pluggable type system. In
the example code below, tags such as tag and return-type are used to provide
type information.

We currently support a built-in optional type annotation syntax based on
the Strongtalk type system. This is an ad hoc measure, and serves only for
documentation at the moment - no typechecker has been implemented. Newspeak
is significantly more dynamic, and harder to typecheck, than Smalltalk, so it is
not possible to directly carry over the Strongtalk system to Newspeak.

Another possible use for metadata is to faciliate liveness in an IDE. We
can annotate methods and factories with metadata describing a sample call to
the method/factory. The IDE can use this information to provide exemplar
instances of the class (in case of a factory) or live activations of a method, so
that users have access to live data for parameters and can evaluate expressions
freely. The example code below uses the tag exemplar for this purpose.

Here is an example showing how metadata is distributed in a class declara-
tion:

class Foo bar: x (*:exemplar: Foo bar: #baz *) = (* :superfactory: Bla send meta-
data *) Bla bar = (

| (:type: Integer *) x = 3. |
(* :baz-metadata: *) baz: (* :x=meta: *) x.

) (* :class-meta: *) (
baz: (* :type: Integer *) t (* :return-type: ˆInteger *) (* :exemplar: baz: 42*) = (

(*:setter-meta: *) y:: (*:send-meta: *) x.
(*:return-meta: *) ˆ (*:send-meta: *) x

)
)
The slot and expression metadata precedes the AST (so send metadata is

unambiguous). Method metadata immediately succeeds the last parameter (or
the method name if there are no parameters). This means that the return type
is given as is method-wide metadata. The same rules work for class factories
and super factory calls. Class wide metadata is provided after class header and
before class body.
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5 Expressions

Expressions are either literals (5.1) or message sends (5.4). Expressions are
evaluated in the context of an activation (3.6) a, known as the current activation.

expression = setterKeyword opt, cascadedMessageExpression.

5.1 Literals

literal = pattern | number | symbolConstant | characterConstant | string | tuple.
There are two basic approaches to specifying the meaning of literals in Newspeak.
One is to define them with respect to fixed classes in the underlying platform,

or as reserved words (in the case of booleans and nil). This is what the existing
implementation does. It is the path of least resistance; it is easier to implement
and easier to make efficient.

The alternative is to specify literals as the results of implicit receiver message
sends (5.7). This means that they can be overridden by user code, effectively
changing the meaning of literals. This is closer to the late bound spirit of the
language, and allows for some neat usage patterns when embedding domain spe-
cific languages in Newspeak.

We intend to investigate this option in the future. It does raise serious issues.
It seems very important that literals should be value objects. The compiler should
be able to rely on that. Can we enforce this on user code? Not in general,
though we coud give warnings for obvious cases. So if the user is foolish enough
to replace a value type with a mutable one, should they expect chaos? It seems
reasonable to me (and poetic justice) but is it too error prone?

5.1.1 Numeric Literals

Numeric literals are value objects. Their form is given by the following gram-
mar:

digit = charBetween: ’0’ and: ’9’.
digits = digit plus.
uppercaseLetter = charBetween: ’A’ and: ’Z’.
extendedDigits = (digit | uppercaseLetter) plus.
radix = (digits, char: ”r”).
fraction = dot, digits.
extendedFraction = dot, extendedDigits.
exponent = (char: ”e”), (char: ”-” ) opt, digits.
decimalNum = (char: ”-”) opt, digits, fraction opt, exponent opt.
radixNum = radix,

(char: ”-”) opt,
extendedDigits,
extendedFraction opt,
exponent opt.

num = radixNum | decimalNum.
number = tokenFor: num.
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A number that includes neither a fraction nor an exponent denotes an object
that obeys the protocol of class Integer. That instance denotes an integer whose
value is sgn · Σri · di, where sgn is -1 if a leading minus was present and 1
otherwise, di, i ∈ 0..n are the digits of the number (given by digits) from right
to left, and r is the radix given by radix (or 10 if no radix is given). The radix
itself is interpreted similarly, except that its radix is always 10.

The radix is always with respect to base 10 since no meta-radix can be spec-
ified.

Note that integers are not limited in size.
Non-integral numbers denote an object that obeys the protocol of class Fixed-

PointNumber.
Actually, we don’t have a class FixedPointNumber at the moment, and non-

integral numbers are currently represented as instances of the Squeak class Frac-
tion. This is a bug.

Most users of Newspeak are not very performance sensitive, and are better
off with numbers that they understand. Financial applications in particular need
accurate decimal numbers. Machine supported floating point numbers can behave
in counterintuitive ways and require a great deal of expertise to manage their
subtleties.

On the other hand, there are certainly applications where floating point per-
formance is critical. Recent experience shows that using arbitrary precision ra-
tionals in numeric computations doesn’t always work very well. The precision
computed my greatly exceed what is required, becoming very expensive for no
benefit.

One possibility is to allow users to choose a numeric implementation. The
crude way to do this would force those users who really want machine floats/doubles
to specify their literals in an awkward way. This is the opposite default from
most languages, which make it hard for users to get accurate numbers. A better
option would be to define fractional literals as message sends (as suggested above
for all literals), and allow people to choose.

5.1.2 Boolean Literals

The reserved word true denotes the unique instance of class True. The reserved
word false denotes the unique instance of class False. They are both value
objects, and correspond to the boolean values true and false, respectively.

5.1.3 nil

The reserved word nil denotes the unique instance of class UndefinedObject.
It is a value object. nil responds to almost all messages with a messageNo-
tUnderstood error. The exceptions are isNil, which answers true and methods
inherited from class Value.
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5.1.4 Character Literals

We plan on doing away with character literals, and having people use string
literals instead.

Character literals have the form “c”, where c is a printable character in the
ASCII character set. The character representing the double quote is represented
by “” (doubling the nested quote). The value of a character literal “c” is equiv-
alent to the expression C codePoint: j, where C is the class Character and j is
an integer corresponding to to the unicode code point for c. A character is a
value object.

The syntax for character literals is given below:
character = digit | letter | specialCharacter | (char: “[”)) | (char: “]”) |

(char: “{”) | (char: “}”) | (char: “(” ) | (char: “)”) |
(char: “ˆ”) | (char: “;”) | (char: “$”) | (char: “#”) |
(char: “:”) | (char: “.”) | (char: “-”) | underscore | (char: “’”).

twoDblQuotes = (char: “”’), (char: “”’).
aChar = (char: “””, (character | twoDblQuotes | (char: ‘”’) | (char:‘ ’)), (char: “””).
characterConstant = tokenFor: aChar.

5.1.5 String Literals

String literals have the form “σ”or ‘σ’ where σ is a sequence of zero or more
Unicode extended graphemes. The value of a string literal is equivalent to the
result of the expression S fromCollection: {c1. . . . . ck} where S is the class
CanonicalString and ci, 1 ≤ i ≤ k are integers representing the encoding of the
string in Unicode normal form C.

The actual source program may be encoded in various ways. The imple-
mentation may choose to represent strings in different ways as well. The String,
Symbol and Character classes provide an API that encapsulates this decision (up
to performance differences). The requirement above ensures that the semantic
effect is as if the source was converted to Unicode NFC, and that strings were
stored using that encoding.

String literals are value objects. Such objects will be canonicalized by the
default implementation.

Currently, we only support the syntax ‘abc’ but not “abc”
The current , temporary, syntax of string literals is given below:
twoQuotes = (char: ‘”’), (char: ‘”’).
stringBody = (character | aWhitespaceChar | (char: ”’”) | twoQuotes) star.
str = (char: “’” ), stringBody, (char: ”’”).
string = tokenFor: str.
Should we allow more escapes, so that expressions can be embedded within?

The plan is to allow some form of string interpolation.

5.1.6 Symbol Literals

These may go away (sniff). I will miss the concise syntax, but it is non-standard.
And string literals will behave as symbols anyway. We will likely keep an im-
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mutable string class that is not canonicalized, but it will not be used for literals.
A mutable string class (aka StringBuffer) is also worth having, but would only
be used by people working with very large strings, and not for literals.

Symbol literals have the form #s, where s is either a string literal (5.1.5), an
identifier, a binary selector (5.4.3) or a sequence of keywords (5.4.3). Symbols
are value objects that are instances of class Symbol. Their syntax is given below:

sym = str | kws | binSel | id.
symbol = tokenFor: sym.
symbolConstant = pound, symbol

5.1.7 Tuple Literals

A tuple literal is either the empty tuple, {}, or has the form {e1. . . . en} for
n ≥ 1. The syntax of tuple literals is given below:

tuple = lcurly, (expression, (dot, expression) star, dot opt) opt, rcurly.
The empty tuple denotes
(R new: 0)
and {e1. . . . en} is equivalent to the following
R fromArray: ((Array new: n) at: 1 put: e1; . . .; at: n put: en; yourself)
where R is the class ReadOnlyTuple. Tools such as debuggers may treat the

expression as an atomic composition of the results of ei, i ∈ 1→ n.
In other words, a debugger need not step through the calls to fromArray:,

new:, at:put: and yourself, but they cannot ignore the ei.
Tuple literals are shallowly immutable.
At the moment, tuples are implemented directly as instances of Array and

therefore mutable. This is a bug.

5.1.8 Closure Literals

A closure literal denotes a newly created instance of class Closure. When a
closure is created, it is associated with a current instance and a current class,
whose values are those of the current instance and current class (respectively)
of the current activation (3.6) if it exists. Otherwise, both the current instance
and current class are nil (5.1.3).

The syntax of closure literals is given below:
block = lbracket, blockParameters opt, codeBody, rbracket.
blockParameters = blockParameter plus, vbar.
blockParameter = colon, slotDecl.
where
slotDecl = identifier.
codeBody = temporaries opt, statements.
temporaries = slotDecls.
slotDecls = seqSlotDecls |

simSlotDecls.
statements = returnStatement |

statementSequence |
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empty.
statementSequence = expression, furtherStatements opt.
furtherStatements = dot, statements.
Syntax note: the delimiters for closures will almost certainly change from

square brackets to curly braces, to keep them aligned with method and class
delimiters, when these are changed to conform to mainstream notation.

Closures are special - they know about the continuation of their lexically
enclosing method and its receiver, as well as having a continuation object given
to them by their caller. Thus the behavior of return statements in a closure
is “non-local” (they return from the nearest enclosing method) , and the result
of executing a body without executing a return statement will return the last
expression’s value, not self).

A closure takes zero or more parameters. An n-ary closure b may be in-
voked by sending it a value message of the appropriate arity. This will cause
instantation of a closure activation a derived from b in response to the message.
Then

• If the closure body is empty, control is passed back to a’s continuation
object (3.6). The value returned is nil (5.1.3).

• Otherwise, the closure body is executed in the context of a. If execution
of the closure body completes, let e be the value of the last statement in
the closure body. In this case, control is passed back to a’s continuation
object. The value returned is e.

If the closure body completes, its statement is necessarily an expression state-
ment, since otherwise it would have been a return statement which would have
passed control elsewhere before the closure completed.

5.1.9 Pattern Literals

Experimental. A pattern literal is either a wildcard pattern, a literal pattern or
a keyword pattern. The exact meaning depends on the binding of the message
Pattern in the environment where the literal is evaluated. By default, Pattern is
defined in class Object and denotes class Pattern of the Newspeak library.

pattern = (tokenFromChar: ”<”), patternLiteral, (char: ”>”).
patternLiteral = wildcardPattern | literalPattern | keywordPattern.

Wildcard Patterns A wildcard pattern matches any object. It is equivalent
to evaluating Pattern wildcard.

wildcardPattern = tokenFromChar: ” ’.

Literal Patterns A literal pattern matches a particular Newspeak literal.
The pattern matches any object whose #= method returns true when invoked
upon the literal named in the pattern. A literal pattern < l > is equivalent to
evaluating Pattern literal: l, where l is either a number literal, a symbol literal,
a character literal, a string literal or a tuple literal.
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literalPattern = tokenFor: number | symbolConstant | characterConstant | string | tu-
ple.

Keyword Patterns A keyword pattern is equivalent to evaluating Pattern
keywords: kws patterns: pats , where kws is a list of symbols denoting keywords,
and pats is a list of expressions. Sending a message with the selector kws to
the pattern should return a binding object describing if and how the pattern
matches the message arguments.

keywordPattern = kwPatternPair plus.
kwPatternPair = keyword, kwPatternValue opt.
kwPatternValue = wildcardPattern | literalPattern | variablePattern | nested-

PatternLiteral.
variablePattern = tokenFor: ( (’?’), id ).
nestedPatternLiteral = tokenFor: pattern.
A keyword pattern may contain a variable pattern of the form ?x nested

within it.

5.1.10 Object Literals

Unimplemented. An object literal expression e evaluates to a newly allocated
object o.

if it’s a value class, how can we tell?
The class Co of o is implicitly declared by e. The expression e specifies the

superclass of Co, what parameters are to be passed to the superclass’ factory
method, and what the mixin Me of Co is. In particular, e specifies what slots,
methods and nested classes the mixin declares and how it initializes its instances.

Each evaluation of e produces a new class Co, but its mixin Me is identical
for all evaluations of e.

The enclosing object (3.3) of Co is the current activation, if there is one;
otherwise it is nil (5.1.3).

If the enclosing object is nil, the superclass clause must be implicit, and the
superclass defaults to Object. Otherwise, if no superclass is explicitly specified
by the object literal, the superclass defaults to the result of evaluating the
implicit receiver message Object.

If we say that the default superclass is Object as defined by the underlying
platform, we would have the strange situation that explicitly writing Object could
give a different result then using the default. This is what would happen if a
module had its own binding of Object.

For literals in general, we have a choice as discussed in the beginning of
section 5.1, but consistency pushes in the direction of flexiblility.

objectLiteral = (identifier, keywordMsg opt) opt, classBody.

5.2 self

When not part of a self send (5.8), the reserved word self denotes the current
instance of the currently executing activation (3.5, 3.6).
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5.3 Parenthesized Expressions

Evaluating an expression in parentheses (e) is equivalent to evaluating e.
parenthesizedExpression = lparen, expression, rparen.

5.4 Message Send Expressions

5.4.1 Evaluation of Message Sends

A message send expression e defines a receiver and a message to that receiver.
and whether the message is synchronous or asynchronous?
The receiver may be given explicitly or it may be implicit. The message is

always given explicitly by a message clause (5.4.2).
Evaluation of the message send proceeds as follows:

• If the receiver is implicit, then e is an implicit receiver send and it is
evaluated as described in section 5.7.

• If the receiver is the reserved word self , enclosed in zero or more pairs of
parentheses, then e is a self send and it is evaluated as described in section
5.8.

• If the receiver has the form outer N (where N is an identifier), then e is
an outer send and it is evaluated as described in section 5.9.

• If the receiver is the reserved word super, then e is a super send and it is
evaluated as described in section 5.10.

• Otherwise, e is an ordinary send and it is evaluated as described in section
5.5.

5.4.2 Message Clauses

Message clauses come in three syntactic forms.
message = keywordMsg | unarySelector | binaryMsg.

Unary Message Clauses A unary message clause consists of a selector that
is an identifier.

unarySelector = identifier.
Evaluation of a unary message clause consists of constructing a message

object with no arguments and a selector that is a symbol derived from the
identifier given by the message clause.

Binary Message Clauses A binary message clause consists of a selector
that consists of special characters as defined in section 4.2, along with a single
argument given by a unary expression.

binaryMsg = binarySelector, unaryExpression.
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Evaluation of a binary message clause consists of evaluating its unary expres-
sion to yield an object a, and constructing a message object with the argument
a and the selector given by the message clause.

Keyword Message Clauses A keyword message clause consists of one or
more keywords each followed by a binary expression. A keyword is defined as
an identifier suffixed by a colon character.

keywordMsg = (keyword, binaryExpression) plus.
Evaluation of a keyword message clause consists of evaluating its binary

expressions in the order they appear, starting at the left, to yield objects
a1 . . . an, 1 ≤ n, and constructing a message object with arguments a1 . . . an
and a selector that is a symbol representing the concatenation of all the key-
words given in the message clause.

5.4.3 Message Send Syntax

Message sends come in four syntactic forms.

Unary Expressions A unary expression u consists of either:

• A primary expression p which is either a literal (5.1), a parenthesized
expression (5.3) or self (5.2). In this case the value of u is the value of p.

or one of the following:

• A unary message, which is directed at the implicit receiver.

• A receiver given by a unary expression, outer, or super followed by a
unary message

In these cases, u is a message send expression, and it is evaluated as described
in section 5.4.1.

primary = unarySelector |
literal |
block |
parenthesizedExpression.

unaryExpression = primary, unarySelector star.

Binary Expressions A binary expression b consists of one of the following:

• A unary expression u. In this case the value of b is the value of u.

• A receiver given by a binary expression followed by a binary message. In
this case, b is a message send expression, and it is evaluated as described
in section 5.4.1.

Binary sends cannot have an implicit receiver (unlike the Self language).
This gives us a lot more flexibility in parsing any new constructs. It also
avoids code that looks like reverse Polish notation.

binaryExpression = unaryExpression, binaryMsg star.
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Keyword Expressions A keyword expression k consists of either:

• A binary expression b. In this case the value of k is the value of b.

or one of the following:

• A keyword message, which is directed at the implicit receiver.

• A receiver given by a binary expression followed by a keyword message.

In these cases, k is a message send expression, and it is evaluated as described
in section 5.4.1.

keywordExpression = binaryExpression, keywordMsg opt.
implicitKeywordSend = keywordMsg.

Setter Sends A setter message has the form id:: e. It is equivalent to the
expression [:p | id:p. p] value:(e) where p 6= id. Tools may treat it as a single
message send however.

sendExpression = implicitKeywordSend | cascadedMessageExpression.
expression = setterKeyword opt, sendExpression.
setterKw = kw, (char: ”:”).
setterKeyword = tokenFor: setterKw.
The rationale for this formulation is to allow setter messages to play a role

similar to traditional assignment. In particular:

• To eliminate excess parentheses, for example, w:: x at: y put: z instead of
w:(x at:y put: z). For this purpose alone, it would have sufficed to specify
that id:: e be equivalent to id:(e).

• To enable chaining of setter sends, e.g., w::x::y, similar to w := x := y.

5.4.4 Compound Message Send Expressions

Cascades A cascade has the form e µ0; . . . µn where µi, i ∈ 0..n are message
clauses and e is an expression. It is equivalent to [:p | p µ0. . . . p µn] value:(e).

nontrivialUnaryMessages = unarySelector plus, binaryMsg star, keywordMsg opt.
nontrivialBinaryMessages = binaryMsg plus, keywordMsg opt.
keywordMessages = keywordMsg.
nonEmptyMessages = nontrivialUnaryMessages |

nontrivialBinaryMessages |
keywordMessages.

cascadeMsg = semicolon, (keywordMsg | binaryMsg | unarySelector).
msgCascade = nonEmptyMessages, cascadeMsg star.
cascadedMessageExpression = primary, msgCascade opt.
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Chains Unimplemented. A chain has the form e :| µ. It is equivalent to (e)
µ.

Chains are a new proposed feature that has not yet been implemented. They
are intended as a sugar that allows one to chain sends without excess parentheses
(similar to the $ operator in Haskell), as in:

label: ”foo” :| color: Color red :| font: #Courier
which otherwise might have to be written as
((label: ”foo”) color: Color red) font: #Courier
Other examples include:
index between: 1 and: string size :| ifTrue: [string at: index]
collection select: [:each | each > 0] :| collect: [:each | each factorial]
While in some cases, a cascade could be used, this doesn’t work if one is cod-

ing in a functional style, where each expression produces a new value. One can
consider chains as ”cascades for functional programming”. Is this worthwhile?
Or are we falling into a cesspool of sweetener? It looks like the idea of chains
can be generalized in a powerful and uniform way. Both chains and cascades are
a form of syntactic combinator. While chains in isolation may seem excessive,
we may yet be able to generalize this in an attractive way. It’s an open question
if chains stay in the language.

5.5 Ordinary Sends

An ordinary send consists of an explicit receiver expression and a message clause
(5.4.2). The receiver expression is evaluated first, yielding an object o. Then
the message clause is evaluated, yielding a message µ with selector s.

Let f = lookupPublic(s,R) where R is the class of o and lookupPublic(n,C)
is defined as

• Undefined, if C =Top.

• m, if the mixin of C defines a method m with selector n and public access.

• Undefined, if the mixin of C defines a method m with selector n and
protected access.

• lookupPublic(n, superclass(C)) otherwise.

If f is defined, then the value of the send is the result of invoking f in
response to (3.5) message µ on o.

Otherwise, the #doesNotUnderstand: method defined for (3.5) the class of
o is invoked with an argument that is a message mirror on µ, and the result
returned by the corresponding method activation is the value of the message
send.

The class Object must provide a default implementation of #doesNotUnder-
stand: as a protected method which causes a MessageNotUnderstood exception
to be thrown.
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This ensures that there always is a #doesNotUnderstand:, method defined
for the class. Subclasses may override it to customize behavior. For example, a
class can choose to have its instances forward messages to other objects.

It is important that #doesNotUnderstand: is protected. Otherwise it would
be possible to distinguish between an object and a proxy.

Let o be an object, and let p be a proxy for that object, that operates using
#doesNotUnderstand: to forward all messages to o. Given a public #doesNo-
tUnderstand: method, one can compare the behavior of o and p. Say o supports
a message #foo that returns 3.

o foo. (* 3 *)
p foo. (* 3 *)
o doesNotUnderstand: #foo. (* message not understood *)
p doesNotUnderstand: #foo. (* 3 *)
However, because #doesNotUnderstand: is protected, the last call fails. If,

on the other hand, o decides to make its #doesNotUnderstand: method public,
both calls will return 3, and so o and p are indistinguishable.

Subclasses should not, as a matter of good practice, reduce the accessibility
of inherited methods, but there is nothing to prevent them from doing so. In
particular, one could override #doesNotUnderstand: with a protected or private
method. However, the wording of the semantics above ensures that the class’
implementation of #doesNotUnderstand: will be invoked by the system regardless
of its accessibility, and so such an attempt to restrict access would be pointless.

An alternative semantics would be to do an ordinary send of #doesNotUn-
derstand:. In that case, changing the access would have an effect, and we would
have to specify what happened if no #doesNotUnderstand: method was defined
(presumably a run time error). I see no advantage to this, as an attacker can
always determine what messages an object supports.

A consequence of the above definitions is that message mirrors are freely
available to all objects. This is not a security issue, as the only capabilities
provided by a message mirror are the name of the method the sender intended
to invoke, and the arguments it was going to pass. Since the sender intended to
pass these arguments to the object that is receiver of #doesNotUnderstand:, and
the name is an immutable symbol, we see no risk in providing this capability
universally.

5.6 Asynchronous Sends

An asynchronous send consists of an explicit receiver expression followed by
the asynchronous send token <-: followed by a message clause. The receiver
expression is evaluated first, yielding an object o. Then the message clause is
evaluated, yielding a message µ.

If o is a promise, then at some point after o is resolved to an object o′, the
send will be processed further as if the receiver were o′. If o is a near reference,
then the send will immediately be processed further as if the receiver were the
remote representation of o.
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If o is a far reference (3.1.2) then let A be the actor associated with the
referent of o. We will often say that the message µ is sent to A in this case.
If A is the current actor Acurrent, then let µ′ be µ, otherwise let µ′ be a new
message in the heap of A, equivalent to µ except that for each argument a in µ,
the remote representation of a is placed in the corresponding position in µ′.

The message µ′ is later placed on A’s message queue for subsequent evalua-
tion. The timing of this placement is constrained by the following rules:

Let A1, A2 and A3 be actors.

1. If A1 sends a message m1 to A2, and subsequently sends message m2 to
A2, then A2 will receive and process m1 before m2.

2. If A1 sends a message m1 to a far reference o associated with A2, and A1

has not yet passed o to A3, and A1 subsequently passes o to A3, then m1

will be received and processed by A2 before any message from A3 to o.

These constraints enforce the E-Order of [Mil06]
The result of the asynchronous send is a promise p that is immediately

returned to the sender.
When A processes µ′ , an ordinary send (5.5) o′ µ′ is executed, where o′ is

the referent of o.
If the execution of the send did not result in an exception being thrown,

then let r be the result of the send. Then if A 6= Acurrent then p is subsequently
resolved to the remote representation of r, otherwise p is immediately resolved
to r.

Otherwise, the the execution of the send resulted in an exception e being
thrown. Then if A 6= Acurrent then p is subsequently broken with the remote
representation of e, otherwise p is immediately broken with exception e.

need to specify what broken promises mean.

5.7 Implicit Receiver Sends

An implicit receiver send consists of a message clause (5.4.2) m. Let s be the
selector of the message that results from the evaluation of m.

• Let d be the innermost lexically enclosing construct in which a method,
slot or class named s is declared, if such a construct exists.

– If d is a class then let N be the name of d. Then the implicit receiver
send is equivalent to an outer send (5.9) of the form outer N m.

– If d is an object literal, then let o be the value of the object literal,
let f be the method with selector s defined on (3.4) o, and let µ be
the value of m. The value of the implicit receiver send is the result
of invoking f on o in response to (3.5) µ.

– Otherwise, d is necessarily a method or a closure literal. Then the
implicit receiver send is equivalent to a send of the message m to the
current activation (3.6) of d.
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• Otherwise, the implicit receiver send is equivalent to a self send (5.8) of
the form self m.

The curved line in figure 4 indicates the lookup path taken for an implicit re-
ceiver send. First, the surrounding lexical scope chain is traversed (as indicated
by the broad red arrow), from a class C through its enclosing class OC, and up
to the top level class OOC. Only if this fails is the receiver’s inheritance chain
followed (broad grey arrow).

5.8 Self Sends

A self send consists of the reserved word self (5.2), enclosed in zero or more
pairs of parentheses, followed by a message clause (5.4.2) m. Let C be the name
of the immediately enclosing class declaration. A self send is equivalent to an
outer send (5.9) of the form outer C m.

Sadly, a self send is not treated compositionally: self m is not evaluated by
first evaluating self and then evaluating m. Consider
| x |
x:: self.
x foo
Here, x foo is not the same as self foo. The former is an ordinary send,

which will succeed only if foo is public. The latter is a self send, which can
access protected members of the the immediately enclosing class, as well as
any private members declared within it.

The option of enclosing a self send in parentheses is of little practical use.
However, by specifying that all such forms are all treated as self sends, we avoid
an ugly wart.

If the self send construct did not allow for parentheses, (self) m would behave
differently from a self send - it would be an ordinary send, and so could not
invoke non-public methods. The parentheses would have a semantic effect beyond
order of evaluation!

This would be easily fixed by having a special syntax for self sends, e.g.,
SelfSend m. However, this flies in the face of deeply ingrained habits, and
would likely cause many mistakes.

No doubt programmers would be surprised that (self) m only called public
methods (because it was just an ordinary send), though the likelihood of that
mistake is negligible. On the other hand, if we were to introduce a special syntax
for self sends, programmers would constantly be surprised and annoyed that self
m was an ordinary send.

Instead, the solution is to recognize the parenthesized form as a self send as
well. All self sends work as expected, and so do parentheses.

5.9 Outer Sends

An outer send consists of the reserved word outer, an identifier N , and a
message clause (5.4.2). It is a compile time error if N is not the name of
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a class whose declaration D lexically encloses the outer send. Let C be the
class declaration immediately enclosing the outer send. D is necessarily the kth
lexically enclosing class declaration (6) of C for some k ≥ 0. Let C ′ be the
current class of the current activation, and let o be the kth enclosing object
(3.3) of self with respect to C ′.

The situation is as represented in figure 3, assuming N = Sk for some k ≤ 3.
A call outer N s is intended to refer to a method s that is defined in an

enclosing class N . Usually this can be referred to simply as s, but in some cases
it may be hidden due to an intervening lexical definition. In practice this is very
rare. Also note that the call cannot be bound statically unless it is private,
since it may be overridden.

Evaluation of the send begins by evaluating the message clause. Let µ the
resulting message and let s be the selector of µ. If N declares a private method
f named s then the value of the send is the result of invoking f in response to
(3.5) message µ on o.

Otherwise, Let f = lookupProtected(s,R) where R is the class of o and
lookupProtected(n,C) is defined as

• Undefined, if C =Top.

• m, if the mixin of C defines a method m with selector n and either public
or protected access.

• lookupProtected(n, superclass(C)) otherwise.

If f is defined, then the value of the send is the result of invoking f in
response to (3.5) message µ on o.

Otherwise, the #doesNotUnderstand: method defined for (3.5) the class of
o is invoked with an argument that is a message mirror on µ, and the result
returned by the corresponding method activation is the value of the message
send.

Readers (and especially prospective implementors) may wish to consider what
happens when such an outer call is executed at run time. We need to identify
the code that should be run; to do that, we must determine the object that should
receive the message µ. We know the receiver of the currently executing method,
and we know what mixin the method was declared in.

The latter tells us what lexical scope we are in, because the mixin was induced
by a class declaration C. Using this information we should be able to locate the
nearest enclosing class declaration named N . This need not necessarily be done
dynamically.

The appropriate receiver for our outer send must be an instance of N , or
more precisely, an instance ok of some subclass Ck of an application of N mixin.
As you’ll see, this is exactly the kth enclosing object of self with respect to C.

To find ok, we’ll start with the class C0 of o0 = self. Somewhere along
the superclass chain of C0 there must be a class S0, that is an application of C
mixin. Usually, this is the class where the current method, which contains our
outer send, was found (in the case of super calls, this may not be the case, but
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we’ll ignore that possibility to keep this example simple; the definition of kth
enclosing object handles the situation correctly). From here, we can climb up
the lexical chain of C.

We can now look at o1, the enclosing object of S0. The class of o1 is C1.
We can apply the same procedure we applied to C0 to C1, except that now we’re
looking for an application of a mixin that corresponds to the next step in the
lexical chain (C’s immediately enclosing class). There has to be one (why?
exercise for the reader).

After k times (and k might be zero) we will reach ok. We don’t have to
precompute k - that is simply an optimization. Instead, we might, at every
stage, check if Cn is in fact an application of a mixin named N .

If the method is private, it cannot be overridden and so the code could be
predetermined - but the receiver could not. If the method is not private, a stan-
dard lookup can be done on ok. This completes the exegesis of this particularly
thorny issue.

5.10 Super Sends

A super send consists of the reserved word super, followed by a message clause
(5.4.2) m. Let a be the current activation (3.6) and C be a’s current class. It is
a run time error if C is Object or Top. Otherwise, let S be the superclass of C.
Evaluation of the send begins by evaluating the message clause. Let µ be the
resulting message, let s be the selector of µ and let o be the current instance of
a. If a public or protected method f named s is defined for (3.5) S, the value
of the send is the result of invoking f in response to (3.5) message µ on o. The
method activation’s current class is set to definingClass(s, S). Otherwise, the
#doesNotUnderstand: method defined for S is invoked with an argument that
is a message mirror on µ, and the result returned by the corresponding method
activation is the value of the message send.

5.11 Class Expressions

Class expressions are used to define classes, and are described in the following
section.

In practice, class expressions are restricted to the top level and as nested
classes in current syntax and implementations. The intent is to relax this re-
striction at some point, but this has not proven at all necessary so far.

6 Classes

A class expression begins with the word class, followed by an identifier that is
the name of the class being created by the expression. The identifier may be
followed by a method signature for the primary factory method of the class. If
the signature is omitted it defaults to new. Next is a specification of the class’
superclass and mixin.
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The mixin can be specified via a class body (6.3) that declares instance
and class members and specifies how to initialize an instance, based on the
parameters given to the primary factory. The formal parameters named in the
primary factory signature are in scope in the instance initializer but not in the
rest of the class body.

Alternatively, the mixin can be specified along with the superclass via a
mixin application (6.2), and in that case, the formal parameters named in the
primary factory signature are in scope throughout the mixin application.

The superclass may be specified as part of a mixin application as noted
above, or it may be specified alongside a class body. If a class body appears,
the superclass can be specified implicitly, or it can be specified explicitly via a
superclass clause. The superclass clause defines how to compute the superclass
and how to invoke its initializer. The superclass clause may be an inheritance
clause (6.1) or a mixin application. If the superclass clause is given implicitly
it defaults to Object.

classDecl = ((tokenFromSymbol: #class), identifier, messagePattern, equalSign,
inheritanceListAndOrBody) |

((tokenFromSymbol: #class), identifier, empty, equalSign,
inheritanceListAndOrBody).

inheritanceListAndOrBody = defaultSuperclassAndBody |
explicitInheritanceListAndOrBody.

defaultSuperclassAndBody = classBody.
explicitInheritanceListAndOrBody = inheritanceClause, mixinSpec.
mixinSpec = classBody | mixinAppSuffix.
mixinAppSuffix = ((tokenFromSymbol: #<:), inheritanceClause) plus,

(dot | classBody).

A class expression is always evaluated in the context of an enclosing object
eo (3.3). If a class expression is directly nested in a method (3.5) or closure, the
enclosing object eo is the activation (3.6) a in which evaluation takes place.

Unimplemented. The current syntax does not allow a class declaration to
appear as an ordinary expression, but the intent is that it will be permitted.

If a class expression is lexically nested directly within another class or within
an object literal, then the declaration is necessarily evaluated in response to a
message (3.4) whose selector is the class’ name. The enclosing object eo is then
the receiver of that message.

Otherwise, the class expression is necessarily evaluated at the top level, and
eo is nil (5.1.3).

The class expression evaluates to a class. This class is an instance of a
metaclass that is the application of the metaclass mixin defined by the class’
class side to the class Class as defined by the underlying platform.

The class has a name, given by the class expression, and an enclosing object
which is eo.

The class is an application of the mixin defined by the class’ instance side
to its superclass. If eo is nil the superclass clause must be implicit, and the
superclass is Object.
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Every instance of a class C has a distinct nested class for each nested class
declaration given in the declaration of C and its superclasses.

The nested classes are distinct, because they implicitly refer to the instance;
every instance created by a nested class refers to the enclosing object via lexical
scoping. This information comes to it from its class (see the discussion of
enclosing objects). Hence, each nested class has one piece of state - it’s enclosing
object, and so there must be a distinct class per instance of the enclosing class.
Also, the superclass of a nested class might be distinct in different instances, as
it might be a parameter to a module.

A declaration of a nested class N nested directly within another class OC
implicitly defines a method with the same name and accessibility in OC. The
first time this method is invoked on a given receiver r, it evaluates the class
declaration, using r as the enclosing object, and returns the resulting class as
its result. Subsequent calls on r always return the same class object.

Ergo, the class is effectively cached within r.
Since a class object has no slots of its own, the only state it can access is

that which is available through its enclosing object. This implies that a module
definition has no state, since its enclosing object is nil.

A class declaration C is its own 0th lexically enclosing class declaration.
For n > 0, a class Cn is the nth lexically enclosing class declaration of a class
declaration C0, if it is the immediately enclosing class declaration of the n− 1st
lexically enclosing class declaration of C0.

6.1 Inheritance Clauses

An inheritance clause consists of an expression ec denoting a class, optionally
followed by a message clause m. If omitted, m defaults to new. It is a run time
error if ec does not evaluate to a class object C. It is a run time error if the
message selector specified by the inheritance clause is not the selector of the
primary factory of the class C.

inheritanceClause = inheritancePrefix opt, unarySelector, message opt.
inheritancePrefix = outerReceiver |

(tokenFromSymbol: #self) |
(tokenFromSymbol: #super).

outerReceiver = (tokenFromSymbol: #outer) , identifier.
The expression ec is syntactically restricted to a unary send whose receiver

is either implicit, self , super, or the receiver of an outer send.
In the future, the receiver may also be a parenthesized expression.
Parenthesized expressions are not yet supported because they would introduce

ambiguities in parsing. These will be resolved when the syntax is changed so that
class bodies are delimited via curly braces.

We also considered allowing ec to be an arbitrary expression, but that is
inherently ambiguous. Consider:

class C foo: x = S m: x ...
is m:x the factory message to the superclass S, or is S m: x as a whole

a message that returns the superclass, to which we will send the message new
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implicitly?
We could of course change the syntax more thoroughly such that the super-

class and factory call are syntactically separate; we may consider this in future
revisions.

If the inheritance clause occurs within an enclosing class E, then the expres-
sion ec is evaluated as if it occurred inside an instance method of E where the
enclosing object of the class expression, eo, is the method’s receiver.

If the inheritance clause does not appear within an enclosing class the ex-
pression ec is evaluated as if it was a top level expression. Consequently, it will
almost certainly fail since no interesting classes are available at top level.

The value of ec is known as the class determined by the inheritance clause.
The message m is evaluated only when the class created by the class expres-

sion immediately enclosing the inheritance clause is instantiated. That process
is described in section 6.3 below.

The value of the message pattern m is known as the message determined by
the inheritance clause.

6.2 Mixin Application

A mixin may be applied to a superclass to produce a new class that is an
application of the mixin.

Syntactically, a mixin application consists of an explicit superclass clause
denoting a class S, followed by the mixin application operator <:, followed by
an inheritance clause that specifies a class C whose mixin M will be applied
to the superclass. The inheritance clause’s message clause m specifies how to
initialize the subobject defined by the mixin.

The result of a mixin application expression is a class I with mixin M and
superclass S. The enclosing object of I is the enclosing object of C. Class I
has a primary factory method (6) with the same selector as m. When invoked,
the primary factory of I creates a new instance o of I, and runs the instance
initializer (6.3) of I on o; then it returns o.

Let ms be the message pattern defined by the superclass clause. The instance
initializer for I evaluates ms to µs, the message determined by the superclass
clause. Next, the instance initializer of I invokes the instance initializer of S on o
with the arguments of µs. Then, m is evaluated to µm, the message determined
by the inheritance clause. The instance initializer of M is then evaluated on o
with the arguments of µm.

Any change made to the structure or code of a mixin effects all of its appli-
cations.

This is because they all share their code and structural definition with the
mixin.

6.3 Class Bodies

A class body consists of an initializer and two sides, the instance side and the
class side.
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Each side defines a mixin. The methods, lazy slots and nested classes of
the class’ mixin are defined via the instance side. The initializer declares the
slots (6.3.2) of the class’ mixin and an optional initialization statement. The
class side, together with the primary factory method, defines the mixin for the
metaclass, whose methods are typically secondary factory methods.

The syntax of a class body is is defined as follows
classBody = classHeader, sideDecl, classSideDecl opt.
where
classHeader = lparen, classComment opt,

slotDecls opt, initExprs, rparen.
classComment:: whitespace, comment.
initExprs = (expression, (dot expression) star, dot opt) opt.
sideDecl = lparen, nestedClassDecl star, lazySlotDecl star, category star, rparen.
nestedClassDecl = accessModifier opt, classDeclaration.
category:: empty, methodDecl star.
classSideDecl = colon, lparen, category star, rparen.
The use of parentheses as delimiters for the sides and initializer derives from

the syntax of Self, via certain Smalltalk dialects of nordic heritage. However,
they will be replaced by curly braces, in conformance with widespread custom.
sniff.

Class comments and categories are temporary measures. They should be
subsumed by the systematic use of metadata (4.3).

A class body implicitly induces an instance initialization method, whose
arguments are the same as those of the primary factory method of the class.

When a class object receives a message µ whose selector is the name of its
primary factory method, the instance initializer is invoked on an instance o of
the class, whose identity is distinct from all other instances of the class. The
object o has distinct copies of all slots declared by the class and its superclasses.
All slots have nil as their initial value.

The message used for the instance initializer invocation is µ, so that the
arguments to the instance initializer are the same arguments given to the pri-
mary factory method. The invocation gives rise to an activation i, per sections
3.5 and 3.6. Execution of the instance initializer begins with evaluation of the
message clause given in the class’ superclass clause in the context of i. The
superclass’ instance initializer is then invoked on o with the resulting message.

The above means that the bindings of the formal parameters of the factory
method are available in the message clause ofthe superclass clause.

Then, all the slot clauses (6.3.2) given in the class’ initializer are executed
in the context of i, in the order they were declared. Afterwards, the (possibly
empty) statement given in the class’ initializer is executed. Finally, i returns o
to the primary factory method, which returns it to its caller.

Note that this formulation implies that the body of a class has no access
to the actual parameters passed during instance creation - only the initializer
does. This encourages a style where all external dependencies of a module are
listed explicitly in the initializer, as slots that are extracted from the factory
parameters. These act as “imports”, and make it easy to see what a module’s
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requirements from its environment are. In addition, it allows the implementa-
tion to garbage collect any unused parameters, instead of retaining them for the
life of the instance.

The parameters are available when computing the arguments to be passed to
the superclass initializer, but not when computing the superclass. This is deliber-
ate, as otherwise, yet another form of mixins can occur, with confusing puzzlers
resulting if the name of a parameter was used as the name of the superclass.

6.3.1 Access Control

Members of a class may optionally be declared with an access modifier, which
may be one of public, protected or private. If no access modifier is declared,
the default is protected. The access level of a top-level class is always public.

6.3.2 Slots

Slots are declared by slot declarations. Slots may be mutable or immutable.
Immutable slots must be initialized explicitly. Mutable slots may be initialized
explicitly or implicitly.

Slots may be initialized sequentially or simultaneously. A sequential slot
clause has the form

seqSlotDecls = vbar, slotDefs, vbar.
slotDefs = slotDef star.
The clause consists of a (possibly empty) series of slot declarations. A slot

declaration declares a slot, and possibly initializes it to the value of the optional
expression at the end of the slot declaration.

slotDef = accessModifier opt, slotDecl,
(( equalSign | (tokenFromSymbol: #’::=’)), expression, dot) opt.

When the clause is executed, the slot declarations within it are executed in
sequence, one after the other.

A simultaneous slot clause has the form
simSlotDecls = vbar, vbar, slotDefs, vbar, vbar.
A simultaneous slot declaration with a right hand side expression e initializes

the slot to the value of p computing: e, where p is the class Past‘Future. The
result is a future that will compute the expression e on demand. All these futures
are resolved once the last slot declaration in the simultaneous slot clause has
been executed.

Past‘Future implements a pipelined promise so that any well founded mutual
recursion between simultaneous slots will resolve properly.

Immutable Slots Immutable slots are introduced via the syntax
identifier = expression.
The above form is an immutable slot declaration.
When an instance is created, its immutable slots are set to the value of

their initialization expression - the expression following the = sign in the slot’s
declaration.
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An immutable slot may be accessed exclusively by invoking a getter method
via a unary message consisting of the name of the slot. The getter method is
implicitly defined by the slot declaration, and returns the value of the slot. The
accessibility of the method is the same as the slot’s. There is no setter method
associated with the slot and slot initialization is not accomplished by means of
a setter method.

Consequently, defining a setter will not impact such an initialization, unless
the method is explicitly invoked in the course of executing the initializer.

Mutable Slots Mutable slots are introduced in two ways.

• With an initializer, via the syntax identifier ::= expression.

Slots declared in this manner are initialized to the value of their initializa-
tion expression when an instance of the class declaring the slot is created.

• Without an initializer, via the syntax identifier

Slots declared in this manner are initialized to nil (5.1.3) when an instance
of the class declaring the slot is created.

The above forms are both mutable slot declarations.
Access to the value of a mutable slot is via a getter method, following the

same rules given above for immutable slots. Except for initialization as part
of its declaration, a mutable slot may be set exclusively by a invoking a setter
method via a single argument keyword message consisting of the slot name with
: appended to it. The initialization itself is not accomplished by the setter
method.

Consequently, overriding a setter will not impact such an initialization, un-
less the method is explicitly invoked in the course of executing the initializer.

The setter method is implicitly defined by the slot declaration. It sets the
value of the slot to be the incoming argument. It returns the receiver of the
message. The accessibility of the method is the same as the slot’s.

In some cases, one would prefer that the setter method return its argument
rather than its receiver. In such cases, one may use a settxer send (5.4.3). One
might quibble that this choice couples the syntactic convenience of setter sends
with a policy choice regarding their result. This is true, but supporting the cross
product of desired return type and desired precedence seems too complex. In
practice, the current specification seems satisfactory.

6.3.3 Lazy Slots

A lazy slot is a slot that is initialized lazily, upon first use.
lazyModifier = (tokenFromSymbol: #lazy), whitespace.
lazySlotDecl = lazyModifier, accessModifier opt, slotDecl,

((tokenFromSymbol: #=) |
(tokenFromSymbol: #’::=’)

), expression, dot.
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A lazy slot declaration has the form lazy m ::= e. or lazy m = e.. The token
lazy may optionally be followed with an access modifier. A lazy slot always has
an initialization expression e, but the slot value is initially nil. When the slot is
read by invoking its getter method m, if the slot contains nil, e is evaluated to
an object o, the slot’s value is set to o (but not by means of a setter method),
and o is returned as the result of the send. Otherwise, the result of getter
method invocation m is the value the slot contains.

Lazy slots are particularly useful for implementing orthogonal synchroniza-
tion [Bra]. The intent is that when synchronization occurs, all lazy slots will
be set to nil, and recomputed on demand based on persistent values that are
synchronized. Lazy slots themselves need never be persisted or synchronized.

Note that lazy slots may be immutable. The changes to a slot as a result of
synchronization should be seen as reflective program changes, not as imperative
mutations.

6.3.4 Method Declarations

The syntax of method declarations is as follows:
methodDecl = accessModifier opt, messagePattern, equalSign,

lparen, codeBody, rparen.
accessModifier = ((tokenFromSymbol: #private) |

(tokenFromSymbol: #public) |
(tokenFromSymbol: #protected)), whitespace.

messagePattern:: unaryMsgPattern |
binaryMsgPattern |
keywordMsgPattern.

unaryMsgPattern = unarySelector.
binaryMsgPattern = binarySelector, slotDecl.
keywordMsgPattern = (keyword, slotDecl) plus.

6.4 Module Declarations

A module declaration is a class expression that is not nested in any other class
expression or object literal. The class object a module declaration evaluates to
is known as a module definition. Module definitions are value objects. Instances
of a module definition are referred to as modules.

7 Statements

Statements are units of code that are executed in the context of an activation
(3.6) .

7.1 Expression Statements

An expression statement consists of an expression e (5). Execution of an ex-
pression statement e in the context of an activation a consists of evaluating e
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in the context of a.

7.2 Return Statements

A return statement has the form ˆe, where e is an expression (5). Execution
of such a return statement in the context of an activation a causes e to be
evaluated in the context of a. Then, if a is a method activation, control is
passed to a’s continuation object (3.6), with the result of the evaluation of e.
Then a is marked uncontinuable (3.6).

Otherwise, a is a closure activation; let am be a’s enclosing method activa-
tion, and let c be the continuation object of am. Control is passed to c. Then
am is marked uncontinuable.

If execution of a return statement causes control to be passed to nil, a
cannotReturn exception is thrown.

returnStatement = hat, expression, dot opt.
We may replace this syntax with a more conventional one. Logically, return

is a message send to the current activation, which gives it a result to hand to
its caller. We may represent is as such, via a send of the form return: e, which
is close to mainstream yet conceptually consistent with our model.

7.3 Statement Sequences

A statement sequence has the form s1. . . . sn. Execution of s1. . . . sn in the
context of an activation a consists of the execution of si, 1 ≤ i ≤ n, in the order
they appear, in the context of a.

8 Pragmatics

8.1 Compilation Units

A source program (3.8) can be used to define a compilation unit - a completely
self contained expression (5) that can be evaluated and serialized into a binary
form. A compilation unit begins with a language id, which identifies which
language the compilation unit is written in.

Currently expressions or statements may be evaluated in the IDE. Only mod-
ule declarations may be used as compilation units. This is indicated in the syntax
below. Eventually, a compilation unit will consist of a language id followed by
a top level expression.

compilationUnit = languageId, toplevelClass.
languageId:: identifier.
toplevelClass = classCategory, classDeclaration.
classCategory = string opt.
The use of class category is also a temporary expedient. It should be subsumed

by metadata (4.3).

46



8.2 Reflection

Newspeak platforms provide the ability to both introspect and modify the run-
ning program via mirrors [BU04]. Mirrors provide the ability to examine and
modify the structure of class declarations and methods, including the bodies of
methods. They also provide for examining and modifying individual objects. In
particular:

• Multiple reflective changes to the program can be applied simultaneously
and atomically. Such changes are transactional - if any change fails, none
take place.

• It is possible to change the class of an individual object.

• It is possible to gain access to the current activation object and its prop-
erties, including its continuation object.

Atomic install is vital to avoid brittleness due to order dependencies among
individual reflective modifications.

Access to reflective functionality must be tightly controlled for security rea-
sons, which is why the use of mirror based reflection is specified. Mirrors serve
as capabilities for reflection.

Reflective access to activations supports applications that otherwise require
continuations.

8.3 Accessing the Host Platform

Every Newspeak implementation provides a platform object that supports func-
tionality provided by the host platform, such as GUI, file system and network
access etc. This may also include platform specific functionality.

Newspeak applications are given access to a platform object via a parameter
of their main:args: method. See 8.4 below.

In the current implementation, one can obtain a platform object in a Newspeak
workspace via the expression platform.

The platform object provides accessors to various modules. These modules in
turn provide access to various classes, some of which are standard and mentioned
in this specification, and others which are platform specific.

8.3.1 Accessing the Virtual Machine

The system provides an accessor for the Newspeak virtual machine itself via a
a mirror on the currently running virtual machine, known as the VM mirror.

The VM mirror supports the set of operations traditionally implemented as
primitives in Smalltalk. There is no syntax for a primitive call in Newspeak. A
primitive call is a message send to the VM mirror. It is important to distinguish
the notion of a a system primitive from the notion of a foreign function call (see
below). These are often conflated (e.g., Java native methods), but the notions
are distinct.
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Caveat: The VM mirror API is not mature, and the set of primitives not
yet standardized. Some primitives will also be platform specific. In practice, we
use our access to Squeak to call methods that involve primitives. This is a bug.

8.4 Running and Deploying Applications

A Newspeak application is an object o with a method main:args: that accepts a
platform object (8.3) as its first parameter, and a list of any environment-specific
(e.g., command line) arguments as its second. The role of main:args: is typically
to instantiate and run a module (6.4) that contains the application code. This
will often involve instantiating and interlinking several modules; these modules
usually require some access to the underlying platform, which is available via
the platform object that was passed into main:args:. The modules themselves
might be members of o, or they may be obtained from the platform object -
either directly or by by loading them dynamically (e.g., from the network or file
system), or even by creating them dynamically.

8.5 Communicating with Other Languages

Newspeak programs can interact with software written in other languages.
Newspeak code can call out to foreign languages by means of alien objects.

There is no notion of an external/foreign/native function/method declara-
tion or call in Newspeak. Calling a function written in another language is done
by sending a message to an alien object.

Different alien classes can be introduced to support different foreign lan-
guages. The most common aliens are C aliens. A C alien object can be produced
upon request by the Newspeak platform object, which should support methods
that, e.g., take a list of files, denoting dynamically linked libraries (DLLs), and
a list of C header files, and produce an alien object. The alien object responds
to messages corresponding to the set of functions supported by the DLLs in
question. The object also supports messages that produce classes correspond-
ing to the various datatypes defined by the DLL. These classes can be used to
produce or interpret data being sent to or received from the alien object.

C aliens are fully operational, but the mechanism for generating them auto-
matically is not yet implemented.

In particular, closures may be exchanged with alien objects, allowing idioms
such as call backs. Inherent is such a model is the concept of Newspeak objects
made available in the context of foreign languages. These objects are known as
expats, which allow foreign languages to call in to Newspeak.

Newspeak IDEs should provide the ability to export a Newspeak module
definition (6.4) as a DLL, or to export a Newspeak application as an executable,
depending on the environment.

Other examples of an alien classes of interest are ObjectiveCAlien, which
can be used to communicate with Objective C code on MacOS based platforms
such as Macs and iPhones, and AliensForV8‘Alien which allows interaction with
Javascript on web browser based implementations.
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One can imagine the introduction of classes such as CLRAlien to facilitate in-
teroperability with .Net based languages, JavAlien which would allow interaction
with Java code (say, on Android).

Another mode of communicating with foreign languages is asynchronous
message passing. Here, Newspeak actors (3.7) communicate with actors written
in other languages. This mode is safer but less performant.

8.6 Exception Handling

Because Newspeak provides reflective access (8.2) to the activation (3.6), ex-
ception handling is purely a library issue. The platform provides a standard
library that supports throwing, catching and resuming exceptions, much as in
Smalltalk.
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