
The Newspeak Programming System

The Ministry of Truth

July 11, 2025

1 Introduction

The Newspeak programming system consists of the Newspeak programming
language and allied tools and libraries. This paper gives an overview of some of
the platform’s key features and reviews its current status. Much of the content
is derived, often verbatim, from prior writings of the Newspeak team including
[Bra25, Mir, Byk08].

Newspeak is an object-capability language in the Smalltalk [GR83] tradition.
It differs from Smalltalk in a number of important ways1 though the basic syntax
is quite similar. See [Mac] for a quick tutorial on some basic syntax, or [Bra25]
for the full grammar. The current implementation of Newspeak runs in the web
browser.

The most important property of the Newspeak language is that it is a mes-
sage based programming language. This means that all computation — even an
object’s own access to its internal structure — is performed by sending messages
to objects. This implies that everything in Newspeak is an object, from elemen-
tary data such as numbers, booleans and characters up to functions, classes and
modules.

Below is a simple example of a Newspeak class named Point. The class
defines two slots x and y. Slots are declared between vertical bars. Slots are
similar to instance variables, except that they are never accessed directly. Slots
are accessed only through automatically generated getters and setters. If p is
a Point, p x and p y denote the values stored in p’s x and y slots respectively.
Note that there is no dot between p and x; since method invocation is the
only operation in Newspeak, it can be recognized implicitly by the compiler.
Comments are demarcated between (* and *), and may be nested. Strings
appear between matching single quotes.

1The key differences are: there are no global, class or pool variables; variables always have
implicit accessors; no assignment operator; classes may nest; there is a top level program/class
syntax.

1

class Point x: i y: j = (* This section is the instance initializer *) (
(* declare slots *)
|
public x ::= i. (* ::= denotes mutable slot initialization *)
public y ::= j.
|)

((* instance side *)
public printString = (

ˆ ’x = ’, x printString, ’ y = ’, y printString
)

)

The first pair of parentheses in the class declaration delimits the instance
initializer where slots are declared and initialized. Slots that are not explicitly
initialized are set to nil.2

Setter methods are denoted by the slot name followed by a colon, so that
p x: 91 sets the x coordinate of p to 91. This is an example of Newspeak’s
keyword syntax. In general, the header of an N -ary method, N > 0, is declared
id1: p1 id2: p2 ... idN: pN, where id1:id2:...idN: is the name of the method and
pi, 1 ≤ i ≤ N are the formal parameters; each idi : is a keyword. An invocation of
such a method is written id1: e1 id2: e2 ... idN: eN, where the ei are expressions
denoting the actual arguments. The order of the keywords is significant and
cannot be changed.

In addition to keyword methods, one may define methods whose name is
composed of a sequence of special symbols such as +, &, | etc. These methods
always take one argument and are written using infix notation, e.g., exponentia-
tion in c ** 2. Here c is the receiver, and 2 is the argument. These methods are
known as binary methods. Our example shows the use of such a binary method:
the “,” method of String which implements string concatenation.

Within the body of Point, the names x, y, x: and y: are in scope and can
be used directly, as shown in the method printString (note that the caret (ˆ) is
used to indicate that an expression should be returned from the method, just
like the return keyword in conventional languages). However, x and y denote
calls to the getter methods, not references to variables.

Newspeak programs enjoy the property of representation independence —
one can change the layout of objects without any need to make further source
changes anywhere in the program. For example, if we chose to modify Point so
that it uses polar coordinates, no modification to the printString method would
be needed, as long as we preserved the interface of Point by providing methods
x and y that compute the cartesian coordinates.

The class declaration evaluates to a class object. Instances may only be cre-
ated by invoking a factory method on Point. Every class has a single primary
factory, in this case x:y:. If no factory name is given, it defaults to new. The
primary factory method’s header is declared immediately after the class name.

2nil is also an object of course.

2

The formal parameters of the primary factory are in scope in the instance ini-
tializer. The slot declarations above include an initialization clause of the form
::= e where e is an arbitrary expression. For example x is initialized to the value
of the formal parameter i using the syntax x ::= i.

The declaration of the primary factory automatically generates a correspond-
ing method on the class object. When invoked, this method will allocate a fresh
instance of the class, o, ensure that the instance initializer of the class is ex-
ecuted with self = o, and return the initialized instance o. To create a fully
initialized instance of Point write, e.g.: Point x: 42 y: 91.

The factory method is somewhat similar to a traditional constructor. How-
ever, it has a significant advantage: its usage is indistinguishable from an ordi-
nary method invocation. This allows us to substitute factory objects for classes
(or one class for another) without modifying instance creation code. Instance
creation is always performed via a late bound procedural interface. This elimi-
nates the primary motivation for dependency injection frameworks [Jav].

1.1 Nested Classes

Newspeak class declarations can be nested within one another to arbitrary
depth. Thus, a Newspeak class can have three kinds of members: slots, methods
and classes. All references to names are always treated as method invocations,
so any member declaration within a class can be overridden in a subclass. It
is possible not only to override methods with methods, but to override slots,
classes and methods with each other. For example, one can decide that in a
particular subclass, a slot value should in fact be computed by a function, and
simply override the slot with a method.

An example of class nesting is ShapeLibrary, a class library for manipulating
geometric shapes, sketched below:

class ShapeLibrary usingPlatform: platform = (
| (* We use = to define immutable slots *)
private List = platform collections List.
private Point = platform graphics Point.
|

)
(
public class Shape = (...)(...)
public class Circle = Shape (...)(...)
public class Rectangle = Shape (...)(...)

)

ShapeLibrary has a number of nested classes within it. Several of these are
outlined in the figure. We elide the details of some class declarations, replacing
them with ellipses.

Shapes are organized in a class hierarchy rooted in class Shape. The details
of this code are unimportant to us here, except for one point: the classes refer

3

to each other. For example both Circle and Rectangle inherit from Shape (the
name of the superclass follows the equal sign in the class declaration). Recall,
however, that a name such as Shape cannot refer to a class directly. Rather,
it is a method invocation that will return the desired class. This method is
defined implicitly in class ShapeLibrary by the declaration of the nested class
Shape. The method is available to all code nested within ShapeLibrary. This is
how an enclosing class provides a namespace for its nested classes.

Top level classes are also known as as module definitions, and their instances
are often referred to as modules. The next few sections discuss Newspeak mod-
ularity in more detail.

1.2 Imports

Code within a module must often make use of code defined by other modules.
For example, ShapeLibrary requires utility classes such as List, defined by the
standard collections library. In the absence of a global namespace, there is no
way to refer to a class such as List directly. Instead, we have defined a slot
named List inside ShapeLibrary.

The slot declarations used in ShapeLibrary differ slightly from our earlier
examples. Here, slot initialization uses = rather than ::=. The use of = sig-
nifies that these are immutable slots, that will not be changed after they are
initialized. No setter methods are generated for immutable slots, thus enforcing
immutability.

When ShapeLibrary is instantiated, it expects an object representing the un-
derlying platform as an argument to its factory method usingPlatform:. This
object will be the value of the factory method’s formal parameter platform.
During the initialization of the module, the slot List will be initialized via the
expression platform collections List. This sends the message collections to plat-
form, presumably returning an object representing an instance of the platform’s
collection library. This object then responds to the message List, returning the
desired class. The class is stored in the slot, and is available to code within the
module definition via the slot’s getter method.

The slot definition of List fills the role of an import statement, as does that
of Point. Note that the parameters to the factory method are only in scope
within the instance initializer. The programmer must take explicit action to
make (parts of) them available to the rest of the module. The preferred idiom
is to extract individual classes and store them in slots, as shown here. It is then
possible to determine the module’s external dependencies at a glance, by looking
at the instance initializer. Encouraging this idiom is the prime motivation for
restricting the scope of the factory arguments to the initializer.

1.3 Access Control

Readers will have noted modifiers such as public and private on members in
our code examples. It is important to understand their exact meaning, as it
differs somewhat from mainstream programming languages.

4

Members of a class may optionally be declared with an access modifier, which
may be one of public, protected or private. If no access modifier is declared,
the default is protected. Only public and protected members are accessible
to subclasses.

The access rules depend on the syntactic form of the message send used to
access the member. Each form has its own lookup rules.

Ordinary sends have the form e m where e denotes the object receiving the
message m. A message m identifies a member by name, and also contains any
arguments. Ordinary sends can only access public members.

Self sends have the form self m. They can access all members declared in the
receiver’s class, as well as any public or protected members of superclasses.

Super sends have the form super m. They can access any public or pro-
tected members of the superclasses of the enclosing class.

Implicit receiver sends (sometimes referred to as here sends) have the form
m. They can access any members declared in the surrounding lexical scope, and
any public or protected members of the receiver’s superclasses.

Outer sends have the form outer C m, where C is the name of a lexically
enclosing class. They can access any members declared in C, and any public
or protected members of C’s superclasses.

One of the most common uses of private is for imports - slots used to hold
classes passed in during object initialization. What imports a class uses should
not be a concern of any other code, not even its subclasses. The implementation
details of the class may change; it might use lists internally at one point, and
thus have a slot like List = platform collections List. Later it might be changed
so it uses maps; the List slot will be removed and replaced with Map = platform
collections Map. The implementor should be free to make that change without
impacting any other code, and so it is advisable to declare import slots private.

1.4 Modularity

Since the entire library is embedded within a single class, it is possible to create
multiple instances of the library and use them simultaneously (side-by-side de-
ployment). Different module instances do not interfere with each other, because
there is no static state. Module definitions are therefore re-entrant.

It is also possible to provide different implementations of a library. For ex-
ample, we could instantiate ShapeLibrary with different platform objects, which
could provide different implementations of List with different characteristics
(e.g., varying speed and memory requirements, logging capabilities etc.). Like-
wise, we could have multiple different implementations of ShapeLibrary itself.
Since a library is accessed strictly via a procedural interface, functionally equiv-
alent implementations may be used transparently to clients.

In all of the above scenarios, one can switch between libraries dynamically,
store libraries in data structures, pass them as parameters etc., because libraries
are represented as first class objects.

The use of nested classes to encapsulate entire libraries forms the basis of
Newspeak’s module system.

5

1.5 Platform Objects

Above, we saw that the ShapeLibrary factory expected a platform parameter.
This is a common idiom. Newspeak allows different platform objects to be
tailored to different needs. Examples might include:

• Platforms for different operating environments, such as Newspeak running
on the web or on top of Smalltalk, or natively on a particular operating
system.

• A platform that is specialized for command-line use, that does not include
a GUI.

• Platforms that are restricted due to security concerns, such as a platform
that does not support reflection or foreign function calls.

The platform object one commonly uses in the current system is an instance
of the class Platform defined in the module RuntimeForHopscotchForHTML. It
provides accessors for modules that provide basic library support (like kernel
and collections), reflection (mirrors), the underlying web browser (js), the UI
(hopscotch) and so on.

When Newspeak ran on top of Squeak Smalltalk, we used a different plat-
form. We have variants of the web platform that run on Wasm (the current
system) or JavaScript (RuntimeForJS, an earlier, incomplete variant that may
be resuscitated at some point). We also have a version that supports live on-line
collaboration (RuntimeForCroquet).

The use of platform objects makes it easy to run modules against a shared
interface that may be common across several implementations of the system,
without limiting these to a least common denominator. It also fits well with
Newspeak’s object capability security model described in section 2.

1.6 Class Hierarchy Inheritance

The dynamic binding of class names applies to a class’ declared superclass as
well, effectively making each class a mixin [BC90]. This ability to override
classes has substantial repercussions, especially when coupled with Newspeak’s
support for nested classes. One can define an entire class library or framework
as a set of classes nested within an outer class, and then modify the library via
inheritance, overriding classes defined within it. This is known as class hierarchy
inheritance [OH92].

We now extend our example to show how class hierarchy inheritance works
in Newspeak.

6

class ExtendShapes withShapes: shapes = (
| private ShapeLibrary = shapes. |

)(
public class ColorShapeLibrary usingPlatform: platform =

ShapeLibrary usingPlatform: platform (
)(
public class Shape = super Shape (| color |)(...)

)
)

The factory method for ExtendShapes, withShapes:, takes a single argument,
shapes which should be a shape library class such as ShapeLibrary. The instance
initializer imports this library under the name ShapeLibrary.

Nested within ExtendShapes is class ColorShapeLibrary, which inherits from
ShapeLibrary. This shows that it is possible to subclass an imported class. The
name of the superclass, ShapeLibrary, is followed by the message usingPlatform:
platform. We do this in order to determine what parameters will be made
available to the superclass’ initializer. Before a subclass’ instance initializer
is executed, control passes to the instance initializer of its superclass in much
the same way as constructors are chained in mainstream languages. Here we
indicate that platform will be passed on to the superclass’ instance initializer.

ColorShapeLibrary overrides Shape. It defines its own class Shape that sub-
classes the superclass’ class of the same name. The overriding class Shape has
added a slot, color. Since Shape is the superclass of all other classes in ShapeLi-
brary, they all inherit the new slot. Let us see how this occurs.

When the class declaration for Shape is overridden in ColorShapeLibrary, the
automatically generated accessor method is overridden as well. Hence every
attempt to access Shape on an instance of ColorShapeLibrary will produce the
overridden class rather than the original.

Classes are generated lazily. The first time a class is referenced, its accessor
manufactures the class and caches the result. Subsequent accesses always return
the same class object.

As an example, consider the class Circle. This class is declared in ShapeLi-
brary and inherited unchanged in ColorShapeLibrary. It declares its superclass to
be Shape. The first attempt to use Circle on an instance of ColorShapeLibrary
will cause the class to be generated; this will require accessing the superclass.
The superclass clause denotes a method invocation, not a direct reference to a
class, just like every other name in a Newspeak program. Therefore, the new
class will be a subclass of the overridden version of Shape, as intended. The
same holds for all other subclasses of Shape in the library, as one would expect.

1.7 Application Assembly and Deployment

In the absence of a global namespace, it may not be obvious how one combines
separately developed top level classes into a single application. Here we discuss
some options; other variations are possible.

7

An application is typically constructed by instantiating a top level class
T representing the application as a whole. T will likely depend on a num-
ber of separately compiled module definitions; its factory method should take
these, and only these, as arguments. The Newspeak IDE provides us with an
extra-linguistic namespace containing all classes used in development. It in this
namespace that we will instantiate T . Use of the IDE namespace is analogous
to how tools like make reference the components of an application utilizing the
file system as a namespace.

Class T should have a method main:args: as its entry point. The method
takes an object representing the underlying platform, and an array of command
line arguments. The code in main:args: will instantiate the various module
definitions imported by T , linking them together as required and then start up
the application.

Below is an example of an application. Our application is a trivial one, an
interactive counter.

class CounterApp packageUsing: manifest = (
| private CounterUI = manifest CounterUI. |

) (
public main: platform args: args = (
| ui = CounterUI usingPlatform: platform. |
platform hopscotch HopscotchWindow openSubject:

(ui CounterSubject onModel: ui Counter new).
)

)
By convention, the factory of an application is named packageUsing:. It takes

a manifest, an object with accessor methods for every object the application
depends on. The application uses the manifest to import its dependencies.
In our example, there is only one dependency, CounterUI, which is the actual
implementation of the counter widget. In main:args: the application creates an
instance, ui, of CounterUI and uses ui’s API to feed hopscotch, the platform GUI,
with the necessary information to display the counter.

The IDE recognizes classes with a packageUsing: factory as applications, and
will provide UI support for running and deploying them.

One deployment option is to use serialized objects as our binary format. We
can serialize an instance of T , and later run it via a tool that deserializes it
and invokes its main:args: method. This is similar to the classic C convention
of invoking an application via a distinguished function main(). T is analogous
to the C program, its main:args: method is analogous to the main() function,
and the serialized instance is analogous to a binary file. Deserialization is the
equivalent of linking and loading.

1.8 Additional Language Features

1.8.1 Actors and Eventual Sends

Newspeak supports asynchronous message passing via eventual sends.

8

remoteView < − : display
Asynchronous messages immediately return a promise as a result. A promise

is initially in the unresolved state. When the asynchronous computation com-
pletes, the promise’s state will change to either resolved, if it succeeded, or
broken, if it failed. Unlike promises in other languages, you can keep sending
asynchronous messages to a promise without having to check if it has resolved.
These messages will be queued up , and when the promise resolves, invoked on
the result. In other words, you can and should freely chain eventual sends. This
is known as promise pipelining.

At some point, you will need to get an actual result out a promise - say, if
you need to print something, or do arithmetic. To deal with such situations,
promises have a method whenFulfilled:whenBroken: that takes two closures - one
to be run in the case when the promise is resolved, and one in the case when
it’s broken.

Eventual sends allow you to proceed with your work while some other ac-
tivity, such as I/O, proceeds concurrently. Let’s examine how concurency is
managed in Newspeak.

Newspeak uses an actor model of concurrency [Agh86] that is heavily influ-
enced by the E programming language [Mil06]. Actors are objects with their
own thread of control and their own heap. They share no state with other
actors; they communicate exclusively via asynchronous messages. Actors are
non-blocking, race-and-deadlock free, and scalable. Actors are exposed via the
module platform actors. 3 This module has a nested class PromiseFactories which
is useful for managing promises.

When an actor is created, it is seeded with an initial value - a deeply im-
mutable object. The result is a far reference to a copy of the value in the actor’s
heap. 4 Far references serve as handles for objects that are not available in the
heap of the currently executing actor. Far references only accept eventual sends.

If you send an object to another actor, the actor receives a far reference to
that object. Similarly, an eventual send to another actor will resolve to a far
reference to an object in that actor’s heap.

Normally, the value used to seed an actor should be a mixin, which can then
be applied to a superclass to produce a class that you then instantiate. Once
you have this instance (or, rather, a far reference to it) you perform the desired
computation using additional eventual sends.

For an extensive discussion of the Newspeak actor model, see [Bot12].5

1.8.2 Lazy Slots

It may be that certain data may never be required, so it is wasteful to allocate
it before we know that we need it. For example, perhaps we have a need to

3In the current implementation, this is an instance of ActorsForPrimordialSoup.
4in reality, there is no need to copy the value unless the actor is running in a different

Newspeak engine, but that is just an optimization.
5Note that this work uses an earlier version of Newspeak, with slightly different syntax

and APIs. Beyond syntax and API discrepancies, some examples may not work due to bugs
in the current implementation.

9

display an object that includes a large list of sub-objects . Often, the user will
not want to view the object is such overwhelming detail, and so we may collapse
the list. We don’t want to allocate UI objects for each element in the list until
they actually needs to be displayed. Yet we don’t want to recompute the list
unnecessarily either.

We could deal with this by defining a slot, elementsSlot to hold the widgets,
and defining a method elements that populates the slot lazily.

elements = (
elementsSlot isNil ifTrue: [elementsSlot:: computeElements].
ˆelementsSlot.

)
Such situations are common enough that Newspeak supports them via lazy

slots. We can write
lazy elements = computeElements.
This behaves much like the longer code above it, but avoids boiler-plate.

It is more concise, leaves less room for errors, and spares the programmer the
trouble of coming up with two names, one for the slot and one for the accessor.
If we still wanted the option of explicitly setting the slot, we could write

lazy elements ::= computeElements.
As usual, the use of ::= in the slot declaration will produce a setter method

(in this case elements:).

1.8.3 Mutually Recursive Slots

Modules are often mutually recursive. Newspeak facilitates this using simul-
taneous slot declarations. These are delimited by double vertical bars, rather
than single ones as used for ordinary slots. A slot inside a simultanous slot
declaration is set to a future for its initalization expression. The futures are
pipelined so that any well founded mutual recursion between simultaneous slots
will resolve properly.

1.9 Style Guidelines

At this point, we should make a few points about coding style. Generous use
of whitespace is encouraged. In particular, a single space between keywords
and formal parameters, and before and after type annotations is recommended.
Likewise a space between keywords and actual arguments. For single argument
keyword sends, if the argument is itself a keyword message, it is best to use the
special setter form using ::. So, instead of foo: (x bar: e), one should write
foo:: x bar: e.

Comments should precede the construct they are describing. This is impor-
tant for the sytem to interpret metadata (see section 6.1 below) in particular.

This concludes our introduction to the Newspeak language. In the following
two sections, we describe Newspeak’s approach to security and reflection. In
sections 4 through 5 we shift to a discussion of the Newspeak system, going

10

through the GUI and IDE, and the approach to interoperability with other
languages.

2 Security

Newspeak’s security model is founded on the object-capability model [Mil06].
In this model, the authority to perform an operation (which may have potential
security implications) is provided exclusively through objects that act as capa-
bilities. This places several requirements on the programming language. These
include:

1. Objects must provide true data abstraction; they must be able to hide
their internals from other objects - even other objects of the same class.

2. There must be no static state (e.g., static or global variables). Such state
can be accessed by code that was not explicitly authorized to do so, pro-
viding ambient authority.

With respect to point 1, Newspeak supports object-level encapsulation. Ob-
ject members that are private or protected can only be referenced within
the scope of the object (see section 1.3). This is not the case in mainstream
object-oriented languages such as C++, Java or C#.

Now consider point 2. A typical example of ambient authority might be
a class File with a constructor that takes a file name and returns an instance
that can access a file in the local file system. This is a standard design, but in
a situation where file system access must be restricted, requires authorization
checks on every access.

As we have already noted, there is no static state in Newspeak, addressing
point 2. In Newspeak, each module runs in its own sandbox, created explicitly
by providing the module with the desired capabilities (i.e., objects provided as
parameters to the factory when the object was constructed). There is usually no
need for explicit (and costly) security checks on individual operations to ensure
that the caller has the appropriate authority to invoke them. The fact that the
caller holds a reference to an object that can perform the operation conveys the
necessary authority.

We illustrate the use of the object-capability model in Newpeak in our sub-
sequent discussion of reflection (section 3) and foreign function calls (section
5).

Notwithstanding all of the above, the current Newspeak prototype does not
provide any security guarantees. The language provides a foundation for se-
curity, but a secure system requires a lot more: careful API design, security
audits, a secure binary format etc. These problems are topics for future work.

11

3 Reflection

Newspeak supports both introspection - the ability of a running program to
examine its own structure - and hotswapping, which allows a program to modify
itself while running. There is, however, a natural tension between reflective
access and security. Newspeak uses a mirror based reflective architecture [BU04]
to resolve this tension.

Whereas mainstream languages provide a uniform level of reflective access
to every object via a standard method such as getClass(), in a mirror based
system, reflection is mediated by objects known as mirrors. Mirrors serve as
capabilities for reflection. Only code that is in possession of a mirror for an
object can reflect on it. Different mirrors can provide varying levels of reflective
access - for example, some mirrors might only allow introspection, others might
restrict even introspection to the public API of a class, and others might provide
unlimited access.

Mirrors can be obtained from the platform’s reflection module. To reflect
on a class c, you might write

cm: (platform mirrors ClassMirror reflecting: c)
The code above returns a class mirror on the class c, and sets the slot cm to

hold it. A reflection module can choose to perform any additional authorization
checks it may require, and return a mirror object that conveys the desired
reflective capabilities. In the extreme case, one could provide a module that
refused to return mirrors at all, effectively disabling reflection.

We can ask the class mirror for a mirror on its mixin:
mx: cm mixin
we can then ask the mixin mirror for its methods, slots or nested classes:
mtds: mx methods.
slts: mx slots.
clsss: mx classes.
Each of these operations returns a MirrorGroup representing the set of ele-

ments in question. Note that it is easy for a given mirror implementation to
return a group that consists of some subset of the elements - for example, only
the public members. The mirror group may be immutable, in which case it can
be queried for specific elements, but not modified:

mtds mirrorNamed: #foo
The mirrorNamed: method looks up a method whose name matches the

symbol #foo in mtds and returns a method mirror on it. This provides for
introspection but prevents modifications to the running system. On the other
hand, a mirror group may be mutable, allowing for changes, e.g.:

mtds addFromSource: ’twice: x = (ˆ2*x’)
It is clear from the above examples that the mirror API can be refined to

provide fine grained control over what reflective operations are permitted. The
design of a suitable API that provides the necessary degree of functionality and
control is non-trivial and ongoing.

12

4 GUI and IDE

4.1 GUI

Newspeak’s UI, Hopscotch [Byk08], is a general purpose reactive GUI frame-
work. Interaction with Hopscotch combines desirable features of web browser
style navigation with support for hierarchical decomposition.

Hopscotch is built upon the notion of fragments, which are resuable inter-
active widgets that may be composed via fragment combinators. Hopscotch
provides a number of built-in fragments like links, buttons etc. It also supports
presenters, which are user defined fragments designed to present a specific kind
of data. These are analogous to views in most MVC UI frameworks.

Hopscotch imposes a navigational paradigm that is similar to the one used in
web browsers. This allows for easy navigation of graphs of presenters. Presen-
ters can be hierarchical, so Hopscotch applications are well suited to displaying
hierarchical data (e.g., tree structures such as file systems or program code).
The combination of navigation and hierarchy imposed by Hopscotch naturally
handles the display of any hypergraph of user data.

The largest Hopscotch application is the IDE, described below.

4.2 IDE

The IDE supports editing and browsing of code and documents, object inspec-
tion, interactive evaluation and debugging, unit testing and application deploy-
ment.

Unlike conventional IDEs, the Newspeak IDE is not centered around files.
Files serve only for persistent storage of code. Browsing and editing are done
using class presenters, which provide a structured view that supports live, in-
cremental development. Changes to code take effect immediately, without a
need for a costly build cycle. In fact, there is no such thing as a build. You edit
individual methods, with no need to compile an entire class when a change is
made.

To further facilitate live development, the system supports the use of exem-
plars: example instances of classes, or example activations of methods, which
you can interact with while coding. The system will endeavor to provide you
with concrete instance of a class when you browse that class, so you get a better
sense of what data its instances hold, and can examine it interactively to see
how it behaves. Likewise, when browsing a method, it will try to make actual
activations of the method available. Exemplars are described in some detail in
[Bra17, Bra21].

The best way to learn how to use the IDE is to work with it. Below is a
screen shot of the Web IDE’s home page, which is what you see when you open
it for the first time.

13

Look for the icon, which opens up context specific help throughout the
UI. When you open the IDE, you’ll find the help button for the IDE as a whole
at the top of the screen, a bit left of center. It will provide an explanation of
the tool bar in which it is situated, which is always available. Below it you’ll
find another toolbar, with a light gray background. It has its own help button
which, when clicked, will tell you about the IDE’s home page. Based on these
instructions, you can follow links to other pages, which will have their own
help buttons (often several of them, for different parts of the page). If you
go thru these systematically, you will find all the IDE’s functionality clearly
documented.

5 Interoperability and FFI

Newspeak includes facilities for calling out to other programming languages,
and being called by them. The generic term for such facilities is a foreign
function interface (FFI). Newspeak does not have a language feature (such as
native methods or extern functions) supporting an FFI. Instead, foreign calls
are mediated via objects known as aliens [Mir, Bra25]. Aliens are objects that
provide access to foreign code. They are object-capabilities for accessing non-
Newspeak code.

The exact same discipline of modularity and security used throughout the
Newspeak system applies to foreign function calls. One cannot access foreign
code unless one has access to alien objects. Newspeak’s design makes it impos-
sible to do otherwise.

The exact formulation of aliens depends on the host environment Newspeak
is running in. In a native implementation, one typically needs to call out to C in
order to interact with the host system. The current Newspeak implementation
runs in the web browser, and one needs to run JavaScript to access the host
system and interact with the outside world. Hence the need for JavaScript

14

aliens.
Newspeak code accesses JavaScript objects via instances of Alien, defined

within JSForPrimordialSoup.
You may pass Newspeak objects as arguments when sending messages to

aliens. The system will represent them to JavaScript as JavaScript objects; these
are known as expats. In general, any JavaScript object coming into Newspeak
(say, a result returned by a method, or arguments passed into a callback) is
converted into an alien, and any Newspeak object passed into JavaScript is
converted to an expat. When expats return to Newspeak they revert to their
original Newspeak representation. Likewise, when aliens are passed back into
JavaScript, they will also be transformed back into the underlying JavaScript
object.

Some datatypes are handled specially by the alien system. Numbers get
converted to floats when passed to JavaScript. Strings are converted back and
forth between their native Newspeak and JavaScript representations. Newspeak
arrays may not be passed into JavaScript at the moment, so you will need
to create JavaScript arrays and copy their contents when sending array data
into JavaScript. JavaScript arrays support the messages at: and at:put: for
indexing, as well as their normal JavaScript methods and properties. Newspeak
closures sent to JavaScript are represented via wrapper closures that convert
their arguments and results recursively as needed. Closures are a common and
important case, because of their use as callbacks.

The conventions for accessing a JavaScript object via an alien are as follows:
To access JavaScript, use platform js, which is an instance of JSForPrimor-

dialSoup. The JavaScript global namespace is available via
platform js global
Below, we assume that this alien is available via a slot named global that

has been imported. Through global, we can reach any JavaScript object.

1. To access properties of a JavaScript object, you use at: and put: to read
and write the property respectively, so one writes alien.a as alien at: ’a’
and alien.a = b as alien at: ’a’ put: b. Examples:

oldVisual.firstChild in JavaScript would be oldVisual at: #firstChild and
node.contentEditable = ”false” is written in Newspeak as

node at: #contentEditable put: ’false’ .

2. To invoke a method on a JavaScript object:

If there are no arguments, use the method name alone, so alien.m() be-
comes alien m. Since you are not in the JavaScript global scope, methods
that are global must be accessed via an import (as noted above, we use
global). Example: window.getSelection() in JavaScript would turn into
global window getSelection. Or, we might import window itself, and then
write window getSelection. The latter is usually better style.

If there is one argument, append a colon and the argument to the method
name. The general pattern is that alien.m(e) becomes alien m: e . Exam-
ples:

15

setTimeout(1000) becomes global setTimeout: 1000.

document.createTextNode(label) becomes document createTextNode: label,
(assuming document was imported).

If the method uses n > 1 arguments, you use a keyword message of the
form m : e1 kw2 : e2 . . . kwn : en , where m is the method name and
kw2 . . . kwn are arbitrarily chosen keywords. Example: you would write
oldVisual.replaceChild(newNode, oldNode) as

oldVisual replaceChild : newNode oldChild: oldNode.

The second and later keywords don’t matter; choose names that are clear
and useful to you. We could have written

oldVisual replaceChild: newNode insteadOf: oldNode

with the same effect. As a matter of style, one should always use the same
name for a given multi-argument JavaScript method.

3. The rules for invoking constructors are similar, except that one uses m =
new. So, to invoke a constructor with no arguments, send the message
new. Example: JSObject new, (assuming we imported JavaScript’s Object
under the name JSObject to avoid confusion with Newspeak’s Object). To
invoke a constructor of one argument, use new:. Example:

JSArray new: fs size (again, we’ve chosen to import JavaScript’s Array
under a distinct name).

For more than one argument, use new : e1 kw2 : e2. . . . kwn : en , where
kw2. . . . kwn are arbitrarily chosen keywords. Example:

Blob new: data options: iterableOptions.

6 Additional Features

In this section, we’ll go over features of the Newspeak system that have not
been discussed above.

6.1 Metadata

Newspeak code may include metadata comments that provide useful informa-
tion to various tools. For example, metadata is used to define exemplars for the
IDE. Here is the header for a class BankAccount [Tea21] that uses metadata for
this purpose.

class BankAccount balance: b (* :exemplar: BankAccount balance: 100 *) = (
|

private balance slot ::= b.
|
)

16

Note the comment on the first line.
The comment begins with a colon-delimited identifier :exemplar:. The use

of a colon-delimited identifier is what identifies it as a metadata comment.
The identifier is used to determine how to interpret the rest of the comment.
Newspeak’s reflection system provides access to metadata, and the Newspeak
IDE interprets metadata comments whose identifier begins with exemplar as
data indicating how to generate exemplar data for a give abstraction.

The remainder of the comment in our example is an expression that creates
an instance of BankAccount. The IDE can use this information to create an
exemplar instance of BankAccount. However, there is a question as to what
scope should this expression be evaluated in.

In the case of top level classes, we evaluate the instantiation expression with
respect to the IDE’s root namespace. The same is true for class methods of top
level classes.

A similar mechanism is used for methods. BankAccount has a method with-
draw:, shown below:

public withdraw: amount
(* :exemplar: withdraw: 100 *) = (

amount > balance ifTrue: [
Error signal: ’Overdraft not allowed. Withdrawal amount ’,

amount printString,
’ exceeds balance ’,
balance printString

].
balance slot:: balance - amount

)

Here we see that the exemplar provides a sample invocation of withdraw:.
The method invocation is evaluated in the scope of the enclosing instance - that
is, the instance of BankAccount we derived from the metadata for the classes’
factory above.

6.2 Types

Newspeak supports type annotations but does not enforce them. Eventually,
the system will include a typechecker that will analyze your programs. It will
be strictly optional, like a linter, and will never prevent your code from running.
In the meantime, types are used strictly as comments.

Type annotations are delimited by angle brackets. and can appear in three
places:

• After slot declarations (both the slots of a class, and those of a method).
For example, we might define the slots x and y in Point via code such as
| public x <Integer>::= 0. public y <Integer>::= 0. | .

17

• After formal parameter declarations in method headers, as in
withdraw: amount <Integer> or
class Point x: i <Integer> y: <Integer>.

• After method headers. e.g.,
printString ˆ <String> = (ˆ ’x = ’, x printString, ’ y = ’, y printString)
Note that in this case, we use the carat as part of the type annotation to
make clear that it denotes the type of the object returned by the method.
If no return type is specified, the system assumes the return type is Self
which denotes the type of the receiver.

You can use the name of a class or mixin as a type. You can also write
generic types, like List[Point] or Map[String, Object]. If the generic arguments
are elided, they default to Object. There are a few special types predefined,
such as Self, or Instance. The latter can be used on the class side to denote the
type of instances of the class. The types of tuples and closures are written in a
manner analogous to the literal expressions for these constructs.

Hence [:Class :Integer | String] denotes the type of a closure that takes a class
and an integer and returns a string, [String] is the type of a closure that takes
no arguments but returns a string. If the return type is elided, it defaults to
Object.

Similarly, {} is the type of an empty tuple and { Integer. String. Float} is
the type of a 3-tuple consisting of an integer, a string and a float in that order.

6.3 Minitest: Newspeak’s Unit Testing System

Newspeaks unit testing framework is called Minitest. Support for Minitest is
integrated into the IDE, so that it recognizes test classes and automatically
instruments them with a UI to allow you to run tests and examine their results.

In Minitest, you define a testing module, which is designed to test a particu-
lar interface (not a particular implementation). To run tests, one needs to feed
the testing module with the particular implementation(s) that one wishes to
test. A test configuration module does just that. Newspeak naturally enforces
this separation of interface and implementation.

Here is a testing module ListTesting. It is a very simplistic set of tests for
lists. ListTesting’s factory method takes 3 arguments: platform (the Newspeak
platform, from which all kinds of generally useful libraries might be obtained),
minitest (an instance of Minitest, naturally) and listClass, a factory that will
produce lists for us to test. This is typical; the first two arguments to a test
module factory are almost always a platform object and an instance of Minitest,
while the third is the object under test.

18

class ListTesting usingPlatform: platform minitest: minitest listClass: listClass = (
|
private TestContext = minitest TestContext.
private List = listClass.
|

) (
public class ListTests = TestContext (
| private list |

) (
public test addition = (...)
public test removal = (...)
) : (
TEST CONTEXT = ()
)

)

Nested within the module is the class ListTests, which includes the actual
tests. Test methods are identified by the convention that their names begin
with test. Each test will be executed in a test context; that is, for each test
method being run, Minitest will instantiate a fresh ListTests object. That is
why ListTests is called a test context - it provides a context for a single test.

It is common to define test context classes like ListTests as subclasses of the
class TestContext defined by the Minitest framework. One reason why having a
Minitest factory argument is useful is so we can import TestContext. TestContext
provides useful methods like deny:, so it is convenient to use it. However, inherit-
ing from TestContext is not essential. What identifies ListTests as a test context
is the marker class method TEST CONTEXT, not inheriting from TestContext.

Minitest will do its work by examining the nested classes of the test module
and seeing which are test contexts (that is, those which have a class method
named TEST CONTEXT). For each test context tc, Minitest will list all its test
methods (the ones with names beginning with test) and for each of those, it will
instantiate tc and call the selected method on it, gathering data on success or
failure.

We need a test configuration to run the tests, as the test module definition is
always parametric with respect to any implementation that we would actually
test.

A test configuration module is defined by a top level class with the factory
method

packageTestsUsing: namespace
The factory takes a namespace object that should provide access to the

testing module declaration and to any concrete classes or objects we want to
test. This arrangement is very similar to how we package applications from
within the IDE.

We show a single test configuration ListTestingConfiguration, but you can
define as many you like.

19

The method testModulesUsingPlatform:minitest: must be provided by the
configuration. It will be called by Minitest to produce a set of testing mod-
ules, each of which will be processed by the framework as outlined above (i.e.,
searched for test contexts to be run).

class ListTestingConfiguration packageTestsUsing: namespace = (
| private ListTesting = namespace ListTesting. |

) (
public testModulesUsingPlatform: platform minitest: minitest = (

ˆ{ListTesting
usingPlatform: platform
minitest: minitest
listClass: platform collections List

}
)
)
The IDE recognizes test configurations based on the name of the factory

method - that is, a class with a class method packageTestsUsing: is considered
a test configuration, and the IDE will provide a run tests link in the class pre-
senter’s upper right hand corner, as you can here:

6.3.1 More about Minitest

If you are used to SUnit (or any of the many unit testing frameworks it has
inspired, like JUnit etc.), it may be worth noting some of the differences.

Minitest does away with concepts like TestResource that are typically used
to hold data for tests.

In the simple case above, the data for the test gets created by the instance
initializer of ListTests. However, what if the data for the test needs to be shared
among multiple tests (say, because it is expensive to create)?

As an example, suppose we want to test a compiler, and setting up the
compiler is relatively costly.

20

class MyCompilerTesting usingPlatform: platform
minitest: minitest
compilerClass: compilerClass = (

| private Compiler = compilerClass. |
)
(
class CompilerHolder = (
| compiler = Compiler configuredInAParticularWay. |

)(
class StatementsTests () (): (TEST CONTEXT = ())

)
)

Minitest leverages Newspeak’s nested structure in these cases. A test con-
text (StatementTests above) does not have to be a direct nested class of the
test module. Instead, we can nest it more deeply inside another nested class
(CompilerHolder). That nested class will serve to hold any state that we want
to share among multiple tests - in our case, an instance of the compiler, which
it will create and store as part of its initialization.

As you can see there is no need for a special setUp method or a test resource
class. Newspeak’s nesting structure and built-in instance initializers take care
of all that. If the shared resource is just an object in memory, then it will
also be disposed of via garbage collection after the test is run. Of course, some
resources cannot be just garbage collected. In that case, one should define a
method named cleanUp in the test context class.

Minitest cleanly breaks down the multiple roles an SUnit TestCase has. The
definition of a set of tests is done by a test context. The actual configuration
is done in a test configuration. And the actual command to run a specific test
(the thing that should be called TestCase) is not the users concern anymore -
the test framework handles it but need not expose it.

6.4 Documents

Ampleforth [Bra22] is an editor for rich text documents with embedded media,
including arbitrary interactive user interface elements. These may themselves
be Ampleforth editors.

The editor is written in the Newspeak programming language, and is inte-
grated with the Newspeak IDE. Ampleforth documents are Newspeak objects.
Each document has its own unique class. In the IDE, one can view a document
in an object presenter, and edit code in the class with the document as the ex-
emplar. It is thus easy to write code in the scope of the document and evaluate
it live at any point.

A document contains an HTML markup program that defines the docu-
ment’s structure. The system allows for either WYSIWYG or markup editing
(or a mix of both), and maintains a live bidirectional relation between the two.

21

Live UI widgets inside a document are known as amplets. To insert an amplet
into the document, type Newspeak code into the WYSIWYG view, select it and
click on the Make it an Amplet button. The code should evaluate to a Hopscotch
fragment. The system will evaluate the code in the scope of the document and
insert the resulting fragment.

Amplets are represented in the markup via HTML nodes of class ampleforth
that include the Newspeak code that creates the UI in their name attribute.
Amplets are cached and managed by the editor.

References

[Agh86] Gul Agha. Actors: A Model of Concurrent Computing in Distributed
Systems. MIT Press, Cambridge, Massachusetts, 1986.

[BC90] Gilad Bracha and William Cook. Mixin-based inheritance. In Proc.
of the Joint ACM Conf. on Object-Oriented Programming, Systems,
Languages and Applications and the European Conference on Object-
Oriented Programming, October 1990.

[Bot12] Nikolay Botev. Actor-based concurrency in Newspeak 4, 2012.

[Bra17] Gilad Bracha. Newspeak exemplar-mode demo from live liter-
ate programming talk at Programming 17. Video, May 2017.
https://youtu.be/Yv7yX27Tx4U.

[Bra21] Gilad Bracha. Exemplars in the Newspeak web IDE. Video, August
2021. https://youtu.be/qKWPSvcF0zA.

[Bra22] Gilad Bracha. Ampleforth: A live literate editor. In
Live 22: The Eighth Workshop on Live Programming,
2022. Available at https://blog.bracha.org/Ampleforth-
Live22/out/primordialsoup.html?snapshot=Live22Submission.vfuel.
Recorded talk at https://www.youtube.com/watch?v=gfbzC 90fJE.

[Bra25] Gilad Bracha. The Newspeak programming language specification,
2025. https://newspeaklanguage.org/spec/newspeak-spec.pdf.

[BU04] Gilad Bracha and David Ungar. Mirrors: Design principles for meta-
level facilities of object-oriented programming languages. In Proc. of
the ACM Conf. on Object-Oriented Programming, Systems, Languages
and Applications, October 2004.

[Byk08] Vassili Bykov. Hopscotch: Towards user interface composition, July
2008. ECOOP 2008 International Workshop on Advanced Software
Development Tools and Techniques (WASDeTT).

[GR83] A. Goldberg and D. Robson. Smalltalk-80: the Language and Its Im-
plementation. Addison-Wesley, 1983.

22

[Jav] Java on Guice: Guice user’s guide. Available at
http://code.google.com/p/google-guice/.

[Mac] Ryan Macnak. Newspeak by example.
https://newspeaklanguage.org/samples/Literate/literate.html.

[Mil06] Mark Samuel Miller. Robust Composition: Towards a Unified Approach
to Access Control and Concurrency Control. PhD thesis, Johns Hopkins
University, Baltimore, Maryland, USA, May 2006.

[Mir] Eliot Miranda. Newspeak FFI internal documentation. Available at
http://wiki.squeak.org/squeak/uploads/6100/Alien%20FFI.pdf.

[OH92] Harold Ossher and William Harrison. Combination of inheritance hier-
archies. In Proceedings OOPSLA ’92, ACM SIGPLAN Notices, pages
25–40, October 1992. Published as Proceedings OOPSLA ’92, ACM
SIGPLAN Notices, volume 27, number 10.

[Tea21] Newspeak Team. Class BankAccount source code, 2021.

23

	Introduction
	Nested Classes
	Imports
	Access Control
	Modularity
	Platform Objects
	Class Hierarchy Inheritance
	Application Assembly and Deployment
	Additional Language Features
	Actors and Eventual Sends
	Lazy Slots
	Mutually Recursive Slots

	Style Guidelines

	Security
	Reflection
	GUI and IDE
	GUI
	IDE

	Interoperability and FFI
	Additional Features
	Metadata
	Types
	Minitest: Newspeak's Unit Testing System
	More about Minitest

	Documents

